Landscape Ecology

, Volume 31, Issue 3, pp 547–566 | Cite as

Differentiating anthropogenic modification and precipitation-driven change on vegetation productivity on the Mongolian Plateau

  • Ranjeet John
  • Jiquan Chen
  • Youngwook Kim
  • Zu-tao Ou-yang
  • Jingfeng Xiao
  • Hoguen Park
  • Changliang Shao
  • Yaoqi Zhang
  • Amartuvshin Amarjargal
  • Ochirbat Batkhshig
  • Jiaguo Qi
Research Article



The Mongolian Plateau, comprising Inner Mongolia, China (IM) and Mongolia (MG) is undergoing consistent warming and accelerated land cover/land use change. Extensive modifications of water-limited regions can alter ecosystem function and processes; hence, it is important to differentiate the impacts of human activities and precipitation dynamics on vegetation productivity.


This study distinguished between human-induced and precipitation-driven changes in vegetation cover on the plateau across biome, vegetation type and administrative divisions.


Non-parametric trend tests were applied to the time series of vegetation indices (VI) derived from MODIS and AVHRR and precipitation from TRMM and MERRA reanalysis data. VI residuals adjusted for rainfall were obtained from the regression between growing season maximum VI and monthly accumulated rainfall (June–August) and were used to detect human-induced trends in vegetation productivity during 1981–2010. The total livestock and population density trends were identified and then used to explain the VI residual trends.


The slope of precipitation-adjusted EVI and EVI2 residuals were negatively correlated to total livestock density (R2 = 0.59 and 0.16, p < 0.05) in MG and positively correlated with total population density (R2 = 0.31, p < 0.05) in IM. The slope of precipitation-adjusted EVI and EVI2 residuals were also negatively correlated with goat density (R2 = 0.59 and 0.19, p < 0.05) and sheep density in MG (R2 = 0.59 and 0.13, p < 0.05) but not in IM.


Some administrative subdivisions in IM and MG showed decreasing trends in VI residuals. These trends could be attributed to increasing livestock or population density and changes in livestock herd composition. Other subdivisions showed increasing trends residuals, suggesting that the vegetation cover increase could be attributed to conservation efforts.


Mongolian Plateau Semi-arid Vegetation indices Precipitation RESTREND MODIS EVI EVI2 GIMMS3 g NDVI Livestock density Population density 



This study was supported by the “Dynamics of Coupled Natural and Human Systems (CNH)” Program of the NSF (#1313761), the LCLUC program of NASA (NNX14AD85G), and the Natural Science Foundation of China (31229001). J. Xiao was supported by the National Science Foundation (NSF) through Macro Systems Biology (Award Number 1065777) and NASA through the Carbon Cycle Science Program (Award Number NNX14AJ18G). We would like to thank Gabriela Shirkey for editing the manuscript. We thank the anonymous reviewers and the editor for their constructive comments on the manuscript.

Supplementary material

10980_2015_261_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 (DOCX 3698 kb)


  1. Akram M, Qian Z, Wenjun L (2008) Policy analysis in grassland management of Xilingol Prefecture, Inner Mongolia in. In: Lee C, Schaaf T (eds) The future of drylands. Springer, Dordrecht, pp 493–505Google Scholar
  2. Alcaraz-Segura D, Liras E, Tabik S, Paruelo J, Cabello J (2010) Evaluating the consistency of the 1982–1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II. Sensors 10(2):1291–1314PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anderson LO, Malhi Y, Aragão LEOC, Ladle R, Arai E, Barbier N, Phillips O (2010) Remote sensing detection of droughts in Amazonian forest canopies. New Phytol 187(3):733–750PubMedCrossRefGoogle Scholar
  4. Anyamba A, Small J, Tucker C, Pak E (2014) Thirty-two years of Sahelian zone growing season non-stationary NDVI3g patterns and trends. Remote Sens 6(4):3101–3122CrossRefGoogle Scholar
  5. Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34(7):L07701CrossRefGoogle Scholar
  6. Bai Y, Wu J, Xing Q, Pan Q, Huang J, Yang D, Han X (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology 89(8):2140–2153PubMedCrossRefGoogle Scholar
  7. Barreto-Munoz A (2013) Multi-sensor vegetation index and land surface phenology earth science data records in support of global change studies: data quality challenges and data explorer system. The University of Arizona, TucsonGoogle Scholar
  8. Chen J, Wan S, Henebry G, Qi J, Gutman G, Sun G, Kappas M (eds) (2013) Dryland East Asia (DEA): land dynamics amid social and climate change. HEP and De Gruyter, Berlin, 470 pp. Retrieved 22 Aug 2015, from
  9. Chen J, John R, Shao C, Fan Y, Zhang Y, Amarjargal A, Brown DG, Qi J, Han JG, Lafortezza R, Dong G (2015a) Policy shifts influence the functional changes of the CNH systems on the Mongolian Plateau. Environ Res Lett. doi: 10.1007/s11367-015-0915-6 Google Scholar
  10. Chen J, John R, Zhang Y, Shao C, Brown DG, Batkhishig O, Amarjargal A, Ouyang Z, Dong G, Wang D, Qi J (2015b) Divergences of two coupled human and natural systems on the Mongolian Plateau. Bioscience 65(6):559–570CrossRefGoogle Scholar
  11. Cheng X, An S, Li B, Chen J, Lin G, Liu Y, Luo Y, Liu S (2006) Summer rain pulse size and rainwater uptake by three dominant desert plants in a desertified grassland ecosystem in northwestern China. Plant Ecol 184(1):1–12CrossRefGoogle Scholar
  12. de Beurs K, Wright CK, Henebry GM (2009) Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environ Res Lett 4(4):045012CrossRefGoogle Scholar
  13. de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens Environ 115(2):692–702CrossRefGoogle Scholar
  14. Didan K (2010) Multi-satellite earth science data record for studying global vegetation trends and changes. In: International geoscience and remote sensing symposium, Honolulu, pp 25–30Google Scholar
  15. Dong J, Liu J, Yan H, Tao F, Kuang W (2011) Spatio-temporal pattern and rationality of land reclamation and cropland abandonment in mid-eastern Inner Mongolia of China in 1990–2005. Environ Monit Assess 179(1–4):137–153PubMedCrossRefGoogle Scholar
  16. Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57(4):535–554CrossRefGoogle Scholar
  17. Fan M, Li Y, Li W (2015) Solving one problem by creating a bigger one: the consequences of ecological resettlement for grassland restoration and poverty alleviation in Northwestern China. Land Use Policy 42:124–130CrossRefGoogle Scholar
  18. Fernández-Giménez ME (2002) Spatial and social boundaries and the paradox of pastoral land tenure: a case study from postsocialist Mongolia. Hum Ecol 30(1):49–78CrossRefGoogle Scholar
  19. Fernández-Giménez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. J Appl Ecol 36(6):871–885CrossRefGoogle Scholar
  20. Fernández-Giménez ME, Batkhishig B, Batbuyan B (2012) Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. Glob Environ Change 22(4):836–851CrossRefGoogle Scholar
  21. Groisman PY, Clark EA, Lettenmaier DP, Kattsov VM, Sokolik IN, Aizen VB, Cartus O, Chen J, Schmullius CC, Conard S, Katzenberger J, Krankina O, Kukkonen J, Sofiev MA, Machida T, Maksyutov S, Ojima D, Qi J, Romanovsky VE, Walker D, Santoro M, Shiklomanov AI, Vörösmarty C, Shimoyama K, Shugart HH, Shuman JK, Sukhinin AI, Wood EF (2009) The Northern Eurasia Earth Science Partnership: an example of science applied to societal needs. Bull Am Meteorol Soc 90(5):671–688CrossRefGoogle Scholar
  22. Hein L, de Ridder N, Hiernaux P, Leemans R, de Wit A, Schaepman M (2011) Desertification in the Sahel: towards better accounting for ecosystem dynamics in the interpretation of remote sensing images. J Arid Environ 75(11):1164–1172CrossRefGoogle Scholar
  23. Hilker T, Natsagdorj E, Waring RH, Lyapustin A, Wang Y (2014) Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob Change Biol 20(2):418–428CrossRefGoogle Scholar
  24. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1–2):195–213CrossRefGoogle Scholar
  25. Huffman GJ, Adler RF, Rudolf B, Schneider U, Keehn PR (1995) Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP Model precipitation information. J Clim 8(5):1284–1295CrossRefGoogle Scholar
  26. Jiang G, Han X, Wu J (2006) Restorat ion and management of the Inner Mongolia grassland require a sustainable strategy. Ambio 35(5):269–270PubMedCrossRefGoogle Scholar
  27. Jiang Z, Huete AR, Didan K, Miura T (2008) Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ 112(10):3833–3845CrossRefGoogle Scholar
  28. John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ Res Lett 4(4):045010CrossRefGoogle Scholar
  29. John R, Chen J, Noormets A, Xiao X, Xu J, Lu N, Chen S (2013a) Modelling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data. Int J Remote Sens 34(8):2829–2857CrossRefGoogle Scholar
  30. John R, Chen J, Ou-Yang Z-T, Xiao J, Becker R, Samanta A, Ganguly S, Yuan W, Batkhishig O (2013b) Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ Res Lett 8(3):035033CrossRefGoogle Scholar
  31. Kawada K, Wuyunna, Nakamura T (2011) Land degradation of abandoned croplands in the Xilingol steppe region, Inner Mongolia, China. Grassl Sci 57(1):58–64CrossRefGoogle Scholar
  32. Kim Y, Huete AR, Miura T, Jiang Z (2010) Spectral compatibility of vegetation indices across sensors: band decomposition analysis with Hyperion data. J Appl Remote Sens 4(1):043520-20–043520-22CrossRefGoogle Scholar
  33. Kim Y, Kimball JS, Zhang K, McDonald KC (2012) Satellite detection of increasing Northern Hemisphere non-frozen seasons from 1979 to 2008: implications for regional vegetation growth. Remote Sens Environ 121:472–487CrossRefGoogle Scholar
  34. Kim Y, Kimball JS, Zhang K, Didan K, Velicogna I, McDonald KC (2014) Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing. Int J Remote Sens 35(10):3700–3721CrossRefGoogle Scholar
  35. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  36. Li A, Wu J, Huang J (2012) Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in inner Mongolia. Landscape Ecol 27(7):969–982CrossRefGoogle Scholar
  37. Li T, Shilling F, Thorne J, Li F, Schott H, Boynton R, Berry A (2010) Fragmentation of China’s landscape by roads and urban areas. Landscape Ecol 25(6):839–853CrossRefGoogle Scholar
  38. Liu J, Li S, Ouyang Z, Tam C, Chen X (2008) Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc Natl Acad Sci USA 105(28):9477–9482PubMedCentralPubMedCrossRefGoogle Scholar
  39. Liu YY, Evans JP, McCabe MF, de Jeu RAM, van Dijk AIJM, Dolman AJ, Saizen I (2013) Changing climate and overgrazing are decimating Mongolian steppes. PLoS ONE 8(2):e57599PubMedCentralPubMedCrossRefGoogle Scholar
  40. Liu Y, Zhuang Q, Miralles D, Pan Z, Kicklighter D, Zhu Q, He Y, Chen J, Tchebakova N, Sirin A, Niyogi D, Melillo J (2015) Evapotranspiration in Northern Eurasia: impact of forcing uncertainties on terrestrial ecosystem model estimates. J Geophys Res 120(7):2014JD022531Google Scholar
  41. Ojima DS, Chuluun T (2008) Implications for land use and landscapes. In: Galvin KA, Reid RS, Behnke JRH, Hobbs NT (eds) Fragmentation in semi-arid and arid landscapes: consequences for human and natural systems. Springer, New York, pp 179–193CrossRefGoogle Scholar
  42. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D'Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938CrossRefGoogle Scholar
  43. Park H-S, Sohn BJ (2010) Recent trends in changes of vegetation over East Asia coupled with temperature and rainfall variations. J Geophys Res 115(D14):D14101CrossRefGoogle Scholar
  44. Pederson N, Leland C, Nachin B, Hessl AE, Bell AR, Martin-Benito D, Saladyga T, Suran B, Brown PM, Davi NK (2013) Three centuries of shifting hydroclimatic regimes across the Mongolian Breadbasket. Agric For Meteorol 178–179:10–20CrossRefGoogle Scholar
  45. Pederson N, Hessl AE, Baatarbileg N, Anchukaitis KJ, Di Cosmo N (2014) Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA 111(12):4375–4379PubMedCentralPubMedCrossRefGoogle Scholar
  46. Piao S, Mohammat A, Fang J, Cai Q, Feng J (2006) NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob Environ Change 16(4):340–348CrossRefGoogle Scholar
  47. Poulter B, Pederson N, Liu H, Zhu Z, D’Arrigo R, Ciais P, Davi N, Frank D, Leland C, Myneni R, Piao S, Wang T (2013) Recent trends in Inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric For Meteorol 178–179:31–45CrossRefGoogle Scholar
  48. Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509(7502):600–603PubMedCrossRefGoogle Scholar
  49. Prince SD, Wessels KJ, Tucker CJ, Nicholson SE (2007) Desertification in the Sahel: a reinterpretation of a reinterpretation. Glob Change Biol 13(7):1308–1313CrossRefGoogle Scholar
  50. Qi J, Jiquan C, Shiqian W, Likun A (2012) Understanding the coupled natural and human systems in Dryland East Asia. Environ Res Lett 7(1):015202CrossRefGoogle Scholar
  51. Reynolds JF, Smith DMS, Lambin EF, Turner BL, Mortimore M, Batterbury SPJ, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE, Huber-Sannwald E, Jiang H, Leemans R, Lynam T, Maestre FT, Ayarza M, Walker B (2007) Global desertification: building a science for dryland development. Science 316(5826):847–851PubMedCrossRefGoogle Scholar
  52. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRefGoogle Scholar
  53. Runnström MC (2000) Is Northern China winning the battle against desertification? Ambio 29(8):468–476CrossRefGoogle Scholar
  54. Samanta A, Ganguly S, Vermote E, Nemani RR, Myneni RB (2012) Interpretation of variations in MODIS-measured greenness levels of Amazon forests during 2000–2009. Environ Res Lett 7(2):024018CrossRefGoogle Scholar
  55. Sankey TT, Sankey JB, Weber KT, Montagne C (2009) Geospatial assessment of grazing regime shifts and sociopolitical changes in a Mongolian Rangeland. Rangel Ecol Manag 62(6):522–530CrossRefGoogle Scholar
  56. Scheftic W, Zeng X, Broxton P, Brunke M (2014) Intercomparison of seven NDVI products over the United States and Mexico. Remote Sens 6(2):1057CrossRefGoogle Scholar
  57. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63(324):1379–1389CrossRefGoogle Scholar
  58. Sharkhuu A, Plante A, Enkhmandal O, Casper B, Helliker B, Boldgiv B, Petraitis P (2013) Effects of open-top passive warming chambers on soil respiration in the semi-arid steppe to taiga forest transition zone in Northern Mongolia. Biogeochemistry 115(1–3):333–348CrossRefGoogle Scholar
  59. Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150CrossRefGoogle Scholar
  60. Wang J, Brown D, Chen J (2013a) Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian Plateau. Landscape Ecol 28(4):725–739CrossRefGoogle Scholar
  61. Wang J, Brown DG, Agrawal A (2013b) Climate adaptation, local institutions, and rural livelihoods: a comparative study of herder communities in Mongolia and Inner Mongolia, China. Glob Environ Change 23(6):1673–1683CrossRefGoogle Scholar
  62. Wessels KJ, Prince SD, Malherbe J, Small J, Frost PE, VanZyl D (2007) Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J Arid Environ 68(2):271–297CrossRefGoogle Scholar
  63. Wessels KJ, van den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sens Environ 125:10–22CrossRefGoogle Scholar
  64. Wright C, de Beurs K, Henebry G (2012) Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt. Front Earth Sci 6(2):177–187CrossRefGoogle Scholar
  65. Xiao J, Moody A (2004) Trends in vegetation activity and their climatic correlates: China 1982–1998. Int J Remote Sens 25(24):5669–5689CrossRefGoogle Scholar
  66. Xiao J, Moody A (2005) Geographical distribution of global greening trends and their climatic correlates: 1982–1998. Int J Remote Sens 26(11):2371–2390CrossRefGoogle Scholar
  67. Yuan C, Liu S, Xie N (2010) The impact on chinese economic growth and energy consumption of the Global Financial Crisis: an input–output analysis. Energy 35(4):1805–1812CrossRefGoogle Scholar
  68. Zhang C, Li W, Fan M (2013) Adaptation of herders to droughts and privatization of rangeland-use rights in the arid Alxa Left Banner of Inner Mongolia. J Environ Manag 126:182–190CrossRefGoogle Scholar
  69. Zhao X, Hu H, Shen H, Zhou D, Zhou L, Myneni R, Fang J (2014) Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landscape Ecol. doi: 10.1007/s10980-014-0095-y Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ranjeet John
    • 1
  • Jiquan Chen
    • 1
    • 2
  • Youngwook Kim
    • 3
  • Zu-tao Ou-yang
    • 1
    • 2
  • Jingfeng Xiao
    • 4
  • Hoguen Park
    • 1
  • Changliang Shao
    • 1
  • Yaoqi Zhang
    • 5
  • Amartuvshin Amarjargal
    • 6
  • Ochirbat Batkhshig
    • 7
  • Jiaguo Qi
    • 1
    • 2
  1. 1.Center for Global Change and Earth ObservationsMichigan State UniversityEast LansingUSA
  2. 2.Department of GeographyMichigan State UniversityEast LansingUSA
  3. 3.Numerical Terradynamic Simulation Group (NTSG)/College of Forestry and ConservationThe University of MontanaMissoulaUSA
  4. 4.Earth Systems Research Center, Institute for the Study of Earth, Oceans, and SpaceUniversity of New HampshireDurhamUSA
  5. 5.School of Forestry and Wildlife SciencesAuburn UniversityAuburnUSA
  6. 6.Department of EconomicsUniversity of the HumanitiesUlaanbaatarMongolia
  7. 7.Institute of GeographyMongolian Academy of SciencesUlaanbaatarMongolia

Personalised recommendations