Advertisement

Landscape Ecology

, Volume 30, Issue 10, pp 2147–2159 | Cite as

Different bat guilds perceive their habitat in different ways: a multiscale landscape approach for variable selection in species distribution modelling

  • Laura Ducci
  • Paolo Agnelli
  • Mirko Di Febbraro
  • Ludovico Frate
  • Danilo Russo
  • Anna Loy
  • Maria Laura Carranza
  • Giacomo Santini
  • Federica Roscioni
Research Article

Abstract

Context

Unveiling the scale at which organisms respond to habitat features is crucial to understand how they are influenced by anthropogenic environmental changes. We implemented species distribution models (SDMs) based on multiple-scale landscape pattern analysis for four bat species representative of different foraging guilds: Nyctalus leisleri, Rhinolophus hipposideros, Myotis emarginatus and Pipistrellus pipistrellus.

Objectives

(a) to assess the environmental factors and the influence of scale on the habitat suitability of bats; (b) to develop an objective methodology to select the best performing variables from a large variable dataset.

Methods

We performed the study in central Italy (Tuscany): 381 variables were derived from topographical and habitat maps using a moving windows analysis set at three spatial scales (1, 5 and 10 km) that are ecologically meaningful for bats. For each species, we ran 381 univariate models to select the variables for multivariate SDMs.

Results

All the variables retained in the SDMs described spatial pattern indices underlining the importance of landscape structure for species distribution. Species reacted differently in terms of both scale and landscape pattern. P. pipistrellus only responded to variables at 10 km; N. leisleri and M. emarginatus did so at two scales (5 and 10 km); whereas R. hipposideros also responded to variables at 1 km.

Conclusions

Our findings make it possible to tailor SDMs according to species-specific landscape pattern requirements at appropriate scales. Our approach, which can be easily extended to other taxa and different spatial scales, represents a significant step towards more effective land management planning.

Keywords

Chiroptera Foraging Landscape pattern Multiscale approach Moving windows, Spatial scale 

Notes

Acknowledgments

We thank NEMO s.r.l. for providing the CLC map. We also acknowledge Filippo Frizzi for his support in providing the topographic maps. Thanks also go to Stefano Vanni for his support in georeferencing the presence data.

Supplementary material

10980_2015_237_MOESM1_ESM.doc (32 kb)
Supplementary material 1 (DOC 32 kb)
10980_2015_237_MOESM2_ESM.doc (620 kb)
Supplementary material 2 (DOC 619 kb)
10980_2015_237_MOESM3_ESM.doc (330 kb)
Supplementary material 3 (DOC 329 kb)
10980_2015_237_MOESM4_ESM.doc (1003 kb)
Supplementary material 4 (DOC 1003 kb)
10980_2015_237_MOESM5_ESM.doc (171 kb)
Supplementary material 5 (DOC 171 kb)

References

  1. Agnelli P, Castelli C, Ducci L, Foggi B, Frizzi F, Giunti M, Guidi T, Puglisi L, Santini G, Vanni S, (2014) Elaborazioni analitiche a supporto della Rete Ecologica Toscana. In Reti ecologiche e paesaggio per il governo del territorio in Toscana (a cura di Falqui e Paolinelli). Collana Paesaggio, ISPRA, ETS PisaGoogle Scholar
  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43(6):1223–1232CrossRefGoogle Scholar
  3. Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Chang Biol 11(9):1504–1513CrossRefGoogle Scholar
  4. Baddeley A, Turner R (2012). Package ‘spatstat’. http://www.spatstat.org
  5. Battersby J (2010) Guidelines for surveillance, monitoring of European bats. EUROBATS Publication series No. 5. UNEP/EUROBATS Secretariat, Bonn, p 95Google Scholar
  6. Bellamy C, Scott C, Altringham J (2013) Multiscale, presence-only habitat suitability models: fine-resolution maps for eight bat species. J Appl Ecol 50:892–901CrossRefGoogle Scholar
  7. Bontadina F, Schofield H, Naef-Daenzer B (2002) Radio-tracking reveals that lesser horseshoe bats (Rhinolophus hipposideros) forage in woodland. J Zool 258(03):281–290CrossRefGoogle Scholar
  8. Booth GD, Niccolucci MJ, Schuster EG (1994) Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation Research Paper INT-470n. United States Department of Agriculture, Forest Service), OgdenGoogle Scholar
  9. Bosso L, Rebelo H, Garonna AP, Russo D (2013) Modelling geographic distribution, detecting conservation gaps in Italy for the threatened beetle Rosalia alpine. J Nat Conserv 21:72–80CrossRefGoogle Scholar
  10. Boughey KL, Lake IR, Haysom KA, Dolman PM (2011) Improving the biodiversity benefits of hedgerows: how physical characteristics and the proximity of foraging habitat affect the use of linear features by bats. Biol Conserv 144(6):1790–1798CrossRefGoogle Scholar
  11. Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 34:445–453CrossRefGoogle Scholar
  12. Cushman SA, McGarigal K, Neel MC (2008) Parsimony in landscape metrics: strength, universality, and consistency. Ecol Ind 8:691–703CrossRefGoogle Scholar
  13. Di Febbraro M, Lurz PW, Genovesi P, Maiorano L, Girardello M, Bertolino S (2013) The use of climatic niches in screening procedures for introduced species to evaluate risk of spread: a case with the American eastern grey squirrel. PLoS One 8(7):e66559PubMedCentralCrossRefPubMedGoogle Scholar
  14. Dietz C, Von Helversen O (2004) Illustrated identification key to the bats of Europe. Eur Bat Res Symp 1:11–157Google Scholar
  15. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz J, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne P, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  16. Ehrenbold AF, Bontadina F, Arlettaz R, Obrist MK (2013) Landscape connectivity, habitat structure and activity of bat guilds in farmland-dominated matrices. J Appl Ecol 50(1):252–261CrossRefGoogle Scholar
  17. Elith J, Graham CH, Person RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, McC Overton J, Peterson AT, Phillips SJ, Karen Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  18. Flaquer C, Puig-Montserrat X, Burgas A, Russo D (2008) Habitat selection by Geoffroy’s bats (Myotis emarginatus) in a rural Mediterranean landscape: implications for conservation. Acta Chiropterol 10(1):61–67CrossRefGoogle Scholar
  19. Forman RT (1995) Some general principles of landscape and regional ecology. Landscape Ecol 10(3):133–142CrossRefGoogle Scholar
  20. Gehrt SD, Chelsvig JE (2003) Bat activity in an urban landscape: patterns at the landscape and microhabitat scale. Ecol Appl 13(4):939–950CrossRefGoogle Scholar
  21. Goiti U, Aihartza J, Guiu M, Salsamendi E, Almenar D, Napal M, Garin I (2011) Geoffroy’s bat, Myotis emarginatus, preys preferentially on spiders in multistratified dense habitats: a study of foraging bats in the Mediterranean. Folia Zool 60(1):17–24Google Scholar
  22. Gorresen PM, Willig MR, Strauss RE (2005) Multivariate analysis of scaledependent associations between bats and landscape structure. Ecol Appl 15:2126–2136CrossRefGoogle Scholar
  23. Grantham HS, Wilson KA, Moilanen A, Rebelo T, Possingham HT (2009) Delaying conservation actions for improved knowledge: how long should we wait? Ecol Lett 12:293–301CrossRefPubMedGoogle Scholar
  24. Hale JD, Fairbrass AJ, Matthews TJ, Sadler JP (2012) Habitat compo sition and connecti vity predicts bat prese nce and activity at foraging sites in a large UK conurbation. PLoS One 7(3):e33300PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefPubMedGoogle Scholar
  26. Hanspach J, Fischer J, Ikin K, Stott J, Law BS (2012) Using trait-based filtering as a predictive framework for conservation: a case study of bats on farms in southeastern Australia. J Appl Ecol 49(4):842–850CrossRefGoogle Scholar
  27. Hargis CD, Bissonette JA, Turner DL (1999) The influence of forest fragmentation and landscape pattern on American martens. J Appl Ecol 36:157–172CrossRefGoogle Scholar
  28. Hirzel AH, Helfer V, Metral F (2001) Assessing habitat-suitability models with a virtual species. Ecol Model 145:111–121CrossRefGoogle Scholar
  29. Holling CS (1992) Cross-scale morphology, geometry, and dynamics of ecosystems. Ecol Monog 62:447–502CrossRefGoogle Scholar
  30. Hostetler M, Holling CS (2000) Detecting the scales at which birds respond to structure in urban landscapes. Urban Ecosyst 4(1):25–54CrossRefGoogle Scholar
  31. Jiguet F, Barbet-Massin M, Henry PY (2010) Predicting potential distributions of two rare allopatric sister species, the globally threatened Doliornis cotingas in the Andes. J Field Ornithol 81(4):325–339CrossRefGoogle Scholar
  32. Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71CrossRefGoogle Scholar
  33. Jones G, Rayner JM (1989) Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol 25(3):183–191CrossRefGoogle Scholar
  34. Jones G, Jacobs DS, Thomas HK, Willing MR, Racey PA (2009) Carpe Noctem: the importance of bats as bioindicators. Endanger Species Res 8:93–115CrossRefGoogle Scholar
  35. Krull D, Schumm A, Metzner W, Neuweiler G (1991) Foraging areas and foraging behavior in the notch-eared bat, Myotis emarginatus (Vespertilionidae). Behav Ecol Sociobiol 28(4):247–253CrossRefGoogle Scholar
  36. Le Coeur D, Baudry J, Burel F, Thenail C (2002) Why and how we should study field boundary biodiversity in an agrarian landscape context. Agric Ecosyst Environ 89(1):23–40CrossRefGoogle Scholar
  37. Li H, Wilkins T (2014) Patch or mosaic: bat activity responds to fine-scale urban heterogeneity in a medium-sized city in the United States. Urban Ecosyst 17:1013–1031CrossRefGoogle Scholar
  38. Mander Ü, Uuemaa E (2010) Landscape assessment for sustainable planning. Ecol Ind 10(1):1–3CrossRefGoogle Scholar
  39. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69CrossRefGoogle Scholar
  40. McGarigal K, McComb WC (1995) Relationships be- tween landscape structure and breeding birds in the Oregon coast range. Ecol Monogr 65:235–260CrossRefGoogle Scholar
  41. McGarigal K, Cushman S, Reagan C (2005) Quantifying terrestrial habitat loss and fragmentation: a protocol; USDA general technical report. Golden, USDA, Rocky Mountain RegionGoogle Scholar
  42. McGarigal K, Cushman SA, Ene E (2012) “FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps.”. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  43. Merckx B, Steyaert M, Vanreusel A, Vincx M, Vanaverbeke J (2011) Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecol Model 222:588–597CrossRefGoogle Scholar
  44. Mills M, Pressey RL, Weeks R, Foale S, Ban NC (2010) A mismatch of scales: challenges in planning for implementation of marine protected areas in the Coral Triangle. Conserv Lett 3:291–303CrossRefGoogle Scholar
  45. Moudrý V, Šímová P (2012) Influence of positional accuracy, sample size and scale on modelling species distributions: a review. Int J Geogr Inf Syst 26:2083–2095CrossRefGoogle Scholar
  46. Nicholls B, Racey PA (2006a) Contrasting home-range size and spatial partitioning in cryptic and sympatric pipistrelle bats. Behav Ecol Sociobiol 61(1):131–142CrossRefGoogle Scholar
  47. Nicholls B, Racey PA (2006b) Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography 29(5):697–708CrossRefGoogle Scholar
  48. Norberg UM, Rayner JM (1987) Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc B 316(1179):335–427CrossRefGoogle Scholar
  49. Numa C, Verdú JR, Sánchez-Palomino P (2005) Phyllostomid bat diversity in a variegated coffee landscape. Biol Conserv 122(1):151–158CrossRefGoogle Scholar
  50. Pearce JL, Boyce MS (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol 43:405–412CrossRefGoogle Scholar
  51. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick JR, Ferrier S (2009) Sample selection bias, presence-only distribution models: implications for background, pseudo-absence data. Ecol Appl 19:181–197CrossRefPubMedGoogle Scholar
  52. Razgour O, Hanmer J, Jones G (2011) Using multi-scale modeling to predict habitat suitability for species of conservation concern: the grey log-eared bat. Biol Conserv 144:2922–2930CrossRefGoogle Scholar
  53. Rebelo H, Jones G (2010) Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). J Appl Ecol 47:410–420CrossRefGoogle Scholar
  54. Rettie WJ, Messier F (2000) Hierarchical habitat selection by woodland caribou: its relationship to limiting factors. Ecography 23:466–478CrossRefGoogle Scholar
  55. Riitters KH, Wickham JD, O’Neill R, Jones KB, Smith ER, Coulston JW, Wade TG and Smith JH (2002) Fragmentation of continental United States forests. Ecosystems 5:815–822Google Scholar
  56. Rodrigues L, Bach L, Duborg-Savage MJ, Goodwin J and Harbusch C (2008) Guidelines for consideration of bats in wind farm projects. EUROBATS Publication Series No. 3 (English version). UNEP/EUROBATS Secretariat, BonnGoogle Scholar
  57. Roscioni F, Russo D, Di Febbraro M, Frate L, Carranza ML, Loy A (2013) Regional-scale modelling of the cumulative impact of wind farms on bats. Biodivers Conserv 22:1821–1835CrossRefGoogle Scholar
  58. Roscioni F, Rebelo H, Russo D, Carranza ML, Di Febbraro M, Loy A (2014) A modelling approach to infer the effects of wind farms on landscape connectivity for bats. Landscape Ecol 29(5):891–903Google Scholar
  59. Russ J (1999) The Bats of Britain, Ireland. Echolocation calls, sound analysis, species identification. Alana Books, Alana Ecology LTD, QuezonGoogle Scholar
  60. Russ JM, Briffa M, Montgomery WI (2003) Seasonal patterns in activity and habitat use by bats (Pipistrellus spp. and Nyctalus leisleri) in Northern Ireland, determined using a driven transect. J Zool 259:289–299CrossRefGoogle Scholar
  61. Russo D (2007) Effects of land abandonment on animal species in Europe: conservation and management implications. Integrated Assessment of vulnerable ecosystems under global change in the European Union. European commission, directorate–general for research environment. Luxembourg: Office for Official Publications of the European Communities, p 53Google Scholar
  62. Russo D, Jones G (2000) The two cryptic species of Pipistrellus pipistrellus (Chiroptera: Vespertilionidae) occur in Italy: evidence from echolocation, social calls. Mammalia 64:187–197CrossRefGoogle Scholar
  63. Russo D, Jones G (2002) Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. J Zool Lond 258:91–103CrossRefGoogle Scholar
  64. Russo D, Jones G (2003) Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography 26:197–209CrossRefGoogle Scholar
  65. Sánchez MC, Cushman SA, Saura S (2013) Scale dependence in habitat selection: the case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain). Int J Geogr Inf Sci 28(8):1–16Google Scholar
  66. Schaefer JA, Messier F (1995) Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen. Ecography 18:333–344CrossRefGoogle Scholar
  67. Shirk AJ (2012) Scale dependency of American marten (Martes americana) habitat relationships. Biology and conservation of martens, sables, and fishers: a new synthesis. Cornell University Press, IthacaGoogle Scholar
  68. Suárez-Seoane S, Baudry J (2002) Scale dependence of spatial patterns and cartography on the detection of landscape change: relationships with species’ perception. Ecography 25(4):499–511CrossRefGoogle Scholar
  69. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRefPubMedGoogle Scholar
  70. Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecol 17:569–586CrossRefGoogle Scholar
  71. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32(3):369–373CrossRefGoogle Scholar
  72. Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299CrossRefGoogle Scholar
  73. Vicente JR, Fernandes RF, Randin CF, Broennimann O, Gonçalves J, Marcos B, Pôças I, Alves P, Guisan A, Honrado JP (2013) Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. J Environ Manag 131:185–195CrossRefGoogle Scholar
  74. Villard MA, Trzcinski MK, Merriam G (1999) Fragmentation effects on forest birds: relative influence of woodland cover and configuration on landscape occupancy. Conserv Biol 13(4):774–783CrossRefGoogle Scholar
  75. Voigt CC, Popa-Lisseanu AG, Niermann I, Kramer-Schadt S (2012) The catchment area of wind farms for European bats: a plea for international regulations. Biol Conserv 153:80–86CrossRefGoogle Scholar
  76. Wasserman TN, Cushman SA, Do W, Hayden J (2012) Multi scale habitat relationships of Martes americana in northern Idaho, USA. Research Paper RMRS-RP-94. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p 21Google Scholar
  77. Waters DA, Jones G, Furlong M (1999) Foraging ecology of Leisler’s bat Nyctalus leisleri at two sites in southern Britain. J Zool Lond 249:173–180CrossRefGoogle Scholar
  78. Wickham JD, Riitters KH, Wade TG, Homer C (2008) Temporal change in fragmentation of continental US forests. Landscape Ecol 23(8):891–898Google Scholar
  79. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397CrossRefGoogle Scholar
  80. Wiens JA (1990) On the use of `grain’ and `grain size’ in ecology. Funct Ecol 3:385–397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Laura Ducci
    • 1
    • 2
  • Paolo Agnelli
    • 2
  • Mirko Di Febbraro
    • 3
  • Ludovico Frate
    • 3
    • 4
  • Danilo Russo
    • 5
    • 6
  • Anna Loy
    • 3
  • Maria Laura Carranza
    • 3
  • Giacomo Santini
    • 1
  • Federica Roscioni
    • 3
  1. 1.Dipartimento di BiologiaUniversità degli Studi di FirenzeSesto FiorentinoItaly
  2. 2.Museo di Storia NaturaleUniversità degli Studi di FirenzeFlorenceItaly
  3. 3.EnvixLab, Dipartimento Bioscienze e TerritorioUniversità del MolisePescheItaly
  4. 4.Istituto di Biologia Agro-Ambientale e Forestale, CNR/IBAFMonterotondoItaly
  5. 5.Wildlife Research Unit, Laboratorio di Ecologia Applicata, Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
  6. 6.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations