Landscape Ecology

, Volume 30, Issue 8, pp 1421–1434 | Cite as

Size-dependent response of tropical wetland fish communities to changes in vegetation cover and habitat connectivity

  • Izaias Fernandes
  • Jerry Penha
  • Jansen Zuanon
Research Article



The replacement of native vegetation by exotic grasses for livestock production is driving landscape homogenization, habitat fragmentation and reducing connectivity between habitat patches in floodplains ecosystems.


In this context we examined how changes in native and exotic vegetation cover, connectivity and water depth affect the attributes of the small [standard length (SL) < 80 mm as adults] and large-sized fish assemblages (SL ≥ 80 mm as adults).


We assessed the effects of water depth, exotic and native vegetation cover and habitat connectivity on the abundance, species richness, body size and biomass of fish assemblages in a 25 km2 area of the seasonal habitats of the Pantanal wetland over 5 years.


We showed that fish assemblage response to meso-scale variation in water depth, vegetation cover and habitat connectivity in seasonal habitats is size-dependent. The gradient from exotic to natural vegetation cover did not affect the assemblages of small-sized fish, which were mostly regulated by water depth, habitat connectivity and the gradient from grassland to forest. However, besides being affected by water depth and habitat connectivity, large-sized fish were also affected by the gradient from exotic to natural vegetation cover.


Our results indicate that transformations in the landscape and changes in the dynamics of inundation may have negative consequences for the long-term persistence of fish assemblages in the Pantanal wetlands.


Temporary habitat Effective distance Landscape connectivity Exotic species Water depth Cattle ranching impacts Pantanal 



We would like to thank the Pantanal Research Center for their financial support. We would also like to thank the National Council for Scientific and Technological Development (CNPq) for productivity grants given to Jansen Zuanon (Proc. 307464/2009-1) and the Postgraduate scholarship given to Izaias Fernandes. Our sincere thanks to S. Magela, M. Bini, F. Costa, W. E. Magnusson and C. E. C. Freitas and two anonymous referees for reviews of earlier versions of the manuscript that greatly improved it.

Supplementary material

10980_2015_196_MOESM1_ESM.doc (630 kb)
Supplementary material 1 (DOC 630 kb)


  1. Adriaensen F, Chardon JP, De Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of ‘least-cost’ modelling as a functional landscape model. Landsc Urban Plan 64(4):233–247CrossRefGoogle Scholar
  2. Agostinho AA, Gomes LC, Zalewski M (2001) The importance of floodplains for the dynamics of fish communities of the upper river Paraná. Ecohydrol Hydrobiol 1:209–217Google Scholar
  3. Alho CJR, Mamede S, Bitencourt K, Benites M (2011) Introduced species in the Pantanal: implications for conservation. Braz J Biol 71(1):321–325PubMedGoogle Scholar
  4. Arrington DA, Winemiller KO, Layman CA (2005) Community assembly at the patch scale in a species rich tropical river. Oecologia 144(1):157–167PubMedCrossRefGoogle Scholar
  5. Babbitt KJ, Baber MJ, Childers DL, Hocking D (2009) Influence of agricultural upland habitat type on larval anuran assemblages in seasonally inundated wetlands. Wetlands 29(1):294–301CrossRefGoogle Scholar
  6. Baber JM, Childers DL, Babbitt KJ, Anderson DH (2002) Controls on fish distribution and abundance in temporary wetlands. Can J Fish Aquat Sci 59:1441–1450CrossRefGoogle Scholar
  7. Barbour CD, Brown JH (1974) Fish species diversity in lakes. Am Nat 108:473–489CrossRefGoogle Scholar
  8. Bodin Ö, Saura S (2010) Ranking individual habitat patches as connectivity providers: integrating network analysis and patch removal experiments. Ecol Model 221(19):2393–2405CrossRefGoogle Scholar
  9. Bolker B (2014) bblme: Tools for general maximum likelihood estimation. R package version 1.0.17Google Scholar
  10. Brock MA, Nielsen DN, Shiel RJ, Green JD, Langley JD (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48:1207–1218CrossRefGoogle Scholar
  11. Brooks ML, D’Antonio C, Richardson DM, Grace JB, Keeley JE, DiTomasso JM, Hobbs RJ, Pellant M, Pyke D (2004) Effects of invasive alien plants on fire regimes. Bioscience 54:677–688CrossRefGoogle Scholar
  12. Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58(2):445–449CrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  14. Casatti L, Ferreira CP, Carvalho FR (2009) Grass-dominated stream sites exhibit low fish species diversity and domi-nance by guppies: an assessment of two tropical pastureriver basins. Hydrobiologia 632(1):273–283CrossRefGoogle Scholar
  15. Chick JH, Ruetz CR, Trexler JC (2004) Spatial scale and abundance patterns of large fish communities in freshwater marshes of the Florida Everglades. Wetlands 24(3):652–664CrossRefGoogle Scholar
  16. Collins SL, Glenn SM, Gibson DJ (1995) Experimental analysis of intermediate disturbance and initial floristic composition: decoupling cause and effect. Ecology 76:486–492CrossRefGoogle Scholar
  17. Cucherousset J, Paillisson JM, Paillisson A, Chapman LJ (2007) Fish emigration from temporary wetlands during drought: the role of physiological tolerance. Arch Hydrobiol 168(2):169–178CrossRefGoogle Scholar
  18. Dray S, Pélissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R, Blanchet FG, De Cáceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J, Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale spatial analysis. Ecol Monogr 82(3):257–275Google Scholar
  19. Englund G, Krupa JJ (2000) Habitat use by crayfish in stream pools: influence of predators, depth and body size. Freshw Biol 43(1):75–83CrossRefGoogle Scholar
  20. ESRI (2006) ArcGIS 9.2. Environmental Systems Research Institute, Redlands, California, USAGoogle Scholar
  21. Etten JV (2012) gdistance: distances and routes on geographical grids. R package version 1.1-3.
  22. Fantin-Cruz I, Girard P, Zeilhofer P, Collischonn W, Nunes da Cunha C (2010a) Unidades fitofisionômicas em mesoescala no Pantanal Norte e suas relações com a geomorfologia. Biota Neotrop 10(2):31–38CrossRefGoogle Scholar
  23. Fantin-Cruz I, Girard P, Zeilhofer P, Collischonn W (2010b) Dinâmica de inundação. In: Fernandes IM, Signor CA, Penha J (eds) Biodiversidade no Pantanal de Poconé. Centro de Pesquisas do Pantanal, Cuiabá, pp 25–35Google Scholar
  24. Fernandes IM, Machado FA, Penha J (2010) Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources. Neotrop Ichthyol 8(2):289–298CrossRefGoogle Scholar
  25. Fernandes IM, Henriques-Silva R, Penha J, Zuanon J, Peres-Neto PR (2014) Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37:464–475Google Scholar
  26. Foltête JC, Girardet X, Clauzel C (2014) A methodological framework for the use of landscape graphs in land-use planning. Landsc Urban Plan 124:140–150CrossRefGoogle Scholar
  27. Gilpin ME (1980) The role of stepping-stone islands. Theor Popul Biol 17:247–253PubMedCrossRefGoogle Scholar
  28. Girard P (2011) Hydrology of surface and ground waters in the Pantanal floodplains. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia, pp 103–126Google Scholar
  29. Goulding M (1980) The fish and the forests—explorations in Amazonian natural history. California Academy Press, BerkeleyGoogle Scholar
  30. Griffith D (2006) Pattern and process in the ecological biogeography of European freshwater fish. J Anim Ecol 75:734–751CrossRefGoogle Scholar
  31. Hanski I (1998) Connecting the parameters of local extinction and metapopulation dynamics. Oikos 83:390–396CrossRefGoogle Scholar
  32. Harris MB, Arcangelo C, Pinto ECT, Camargo G, Ramos Neto MB, Silva SM (2005) Estimativas de perda da área natural da Bacia do Alto Paraguai e Pantanal Brasileiro. Relatório técnico, Conservação Internacional, Campo GrandeGoogle Scholar
  33. Harvey BC, Stewart AJ (1991) Fish size and habitat depth relationships in headwater streams. Oecologia 87(3):336–342CrossRefGoogle Scholar
  34. Heckman CW (1994) The seasonal succession of biotic communities in wetlands of the tropical wet-and-dry climatic zone: I. Physical and chemical causes and biological effects in the Pantanal of Mato Grosso, Brazil. Int Revue Ges Hydrobiol 79(3):397–421CrossRefGoogle Scholar
  35. Hejda M, Pysek P, Jarosík V (2009) Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol 97:393–403CrossRefGoogle Scholar
  36. Henning JA, Gresswell RE, Fleming IA (2007) Use of seasonal freshwater wetlands by fishes in a temperate river floodplain. J Fish Biol 71:476–492CrossRefGoogle Scholar
  37. Hoffmann WA, Lucatelli VM, Silva FJ, Azeuedo INC, Marinho MS, Albuquerque AMS, Lopes AOL, Moreira SP (2004) Impact of the invasive alien grass Melinis minutiflora at the savanna-forest ecotone in the Brazilian Cerrado. Divers Distrib 10(2):99–103Google Scholar
  38. Jackson DA (1993) Stopping rules in principal component analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214CrossRefGoogle Scholar
  39. Jackson DA (1997) Compositional data in community ecology: the paradigm or peril of proportions? Ecology 78(3):929–940CrossRefGoogle Scholar
  40. Jackson DA, Harvey HH (1997) Qualitative and quantitative sampling of lake fish communities. Can J Fish Aquat Sci 54:2807–2813CrossRefGoogle Scholar
  41. Jacobson B, Peres-Neto PR (2010) Quantifying and disentangling dispersal in metacommunities: how close have we come? How far is there to go? Landscape Ecol 25(4):495–507CrossRefGoogle Scholar
  42. Jenkins KM, Boulton AJ (2007) Detecting impacts and setting restoration targets in arid-zone rivers: aquatic micro-invertebrate responses to reduced floodplain inundation. J Appl Ecol 44:823–832CrossRefGoogle Scholar
  43. Junk WJ, Nunes da Cunha CN (2012) Pasture clearing from invasive woody plants in the Pantanal: a tool for sustainable management or environmental destruction? Wetl Ecol Manag 20(2):111–122CrossRefGoogle Scholar
  44. Junk WJ, Bayley PB, Sparks RS (1989) The flood pulse concept in river—floodplain systems. In: Dodge DP (ed) Proceedings of the international larger river symposium (LARS). Can J Fish Aquat Sci 106:110–127Google Scholar
  45. Junk WJ, Nunes da Cunha C, Wantzen KM, Petermann P, Strussmann C, Marques MI, Adis J (2006) Biodiversity and Its Conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68:278–309CrossRefGoogle Scholar
  46. Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Bozelli RL, Esteves FA, Nunes da Cunha C, Maltchik L, Schöngart J, Schaeffer-Novelli Y, Agostinho AA (2014) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv 24(1):5–22Google Scholar
  47. Kodric-Brown A, Brown JH (1993) Highly structured fish communities in australian desert springs. Ecology 74(6):1847–1855CrossRefGoogle Scholar
  48. Landi M, Zoccola A, Bacaro G, Angiolini C (2014) Phenology of Dryopteris affinis ssp. affinis and Polystichum aculeatum: modeling relationships to the climatic variables in a Mediterranean area. Plant Spec Biol 29:129–137CrossRefGoogle Scholar
  49. Lapointe NWR, Corrum LD, Mandrak NE (2006) A comparison of methods for sampling fish diversity in shallow offshore waters of large rivers. N Am J Fish Manag 26:503–513CrossRefGoogle Scholar
  50. Legendre P, Legendre LF (2012) Numerical ecology, vol 20. Elsevier, OxfordGoogle Scholar
  51. Loehle C (2007) Effect of ephemeral stepping stones on metapopulations on fragmented landscapes. Ecol Complex 4(1):42–47CrossRefGoogle Scholar
  52. Lomolino MV (1990) The target area hypothesis: the influence of island area on immigration rates of non-volant mammals. Oikos 57:297–300CrossRefGoogle Scholar
  53. Maberly SC, Spence DHN (1989) Photosynthesis and photorespiration in freshwater organisms: amphibious plants. Aquat Bot 34(1):267–286CrossRefGoogle Scholar
  54. MacArthur RH, Levins R (1964) Competition, habitat selection and character displacement in a patchy environment. Proc Natl Acad Sci 51:1207–1210PubMedCrossRefPubMedCentralGoogle Scholar
  55. Magurran AE (2004) Measuring biological diversity. Blackwell Science, OxfordGoogle Scholar
  56. Magnusson WE, Lima AB, Luizao RC, Luizão ]F, Costa FRC, Castilho CV, Kinupp VF (2005) RAPELD, uma modificação do método de Gentry para inventários de biodiversidade em sítios para pesquisa ecológica de longa duração. Biota Neotrop 5(2):1–6CrossRefGoogle Scholar
  57. Marty JT (2005) Effects of cattle grazing on diversity in ephemeral wetlands. Conserv Biol 19(5):1626–1632CrossRefGoogle Scholar
  58. Mayo JS, Jackson DA (2006) Quantifying littoral vertical habitat structure and fish community associations using underwater visual census. Environ Biol Fish 75:395–407CrossRefGoogle Scholar
  59. Miyazono S, Taylor CM (2013) Effects of habitat size and isolation on species immigration–extinction dynamics and community nestedness in a desert river system. Freshw Biol 58(7):1303–1312CrossRefGoogle Scholar
  60. Nunes da Cunha C, Rebellato L, Costa CP (2010) Vegetação e flora: uma experiência pantaneira no sistema de grade. In: Signor C, Fernandes I, Penha J (eds) Biodiversidade no Pantanal de Poconé, vol 01. 1ed.Manaus, Attema, pp 37–57Google Scholar
  61. Opperman JJ, Luster R, McKenney BA, Roberts M, Meadows AW (2010) Ecologically functional floodplains: connectivity, flow regime, and scale. J Am Water Resour Assoc 46(2):211–226CrossRefGoogle Scholar
  62. Penha JMF, Da Silva CJ, Bianchini Júnior I (1998) Análise do crescimento da macrófita aquática Pontederia lanceolata em área alágavel do Pantanal Mato-grossense, Brasil. Braz J Biol 58(2):287–300Google Scholar
  63. Penha J, Mateus L, Lobón-Cerviá J (2015) Population regulation in a Neotropical seasonal wetland fish. Environ Biol Fish 98:1023–1034CrossRefGoogle Scholar
  64. Power ME (1984) Depth distributions of armored catfish predator-induced resource avoidance. Ecology 65(2):523–528CrossRefGoogle Scholar
  65. Prado AL, Heckman CW, Martins FR (1994) The seasonal succession of biotic communities in wetlands of the tropical wet-and-dry climatic zone: II. The aquatic macrophyte vegetation in the Pantanal of Mato Grosso, Brazil. Internatertionale Revue gesamten Hydrobiologie 79(4):569–589CrossRefGoogle Scholar
  66. Prugh LR (2009) An evaluation of patch connectivity measures. Ecol Appl 19:1300–1310PubMedCrossRefGoogle Scholar
  67. Prugh LR, Hodges KE, Sinclair AR, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci 105(52):20770–20775PubMedCrossRefPubMedCentralGoogle Scholar
  68. Questad EJ, Foster BL, Jog S, Kindscher K, Loring H (2011) Evaluating patterns of biodiversity in managed grasslands using spatial turnover metrics. Biol Conserv 144:1050–1058CrossRefGoogle Scholar
  69. Rayfield B, Fortin MJ, Fall A (2011) Connectivity for conservation: a framework to classify network measures. Ecology 92(4):847–858PubMedCrossRefGoogle Scholar
  70. Rebellato L, Nunes da Cunha C (2005) Efeito do “fluxo sazonal mínimo da inundação” sobre a composição e estrutura de um campo inundável no Pantanal de Poconé, MT, Brasil. Acta Bot Bras 19(4):789–799CrossRefGoogle Scholar
  71. Rebellato L, Nunes da Cunha C, Figueira JEC (2012) Respostas da comunidade herbácea ao pulso de inundação no Pantanal de poconé, Mato Grosso. Oecol Aust 16(4):797–818CrossRefGoogle Scholar
  72. Reis RE, Kullander O, Ferraris CJ Jr (2003) Check list of the freswater fishes of South and Central America. Edipucrs, Porto Alegre, p 742Google Scholar
  73. Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale. J Roy Stat Soc C-App 54(3):507–554CrossRefGoogle Scholar
  74. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  75. Samson F, Knopf F (1994) Prairie conservation in North America. Bioscience 44:418–421CrossRefGoogle Scholar
  76. Saura S, Pascual-Hortal L (2007) A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landsc Urban Plan 83:91–103CrossRefGoogle Scholar
  77. Scherer RD, Muths E, Noon BR (2012) The importance of local and landscape-scale processes to the occupancy of wetlands by pond-breeding amphibians. Popul Ecol 54(4):487–498CrossRefGoogle Scholar
  78. Schessl M (1999) Floristic composition and structure of floodplain vegetation in northern Pantanal of Mato Grosso, Brasil. Phyton 39(2):303–336Google Scholar
  79. Seidl AF, Silva JDSVD, Moraes AS (2001) Cattle ranching and deforestation in the Brazilian Pantanal. Ecol Econ 36(3):413–425CrossRefGoogle Scholar
  80. Shröder T (2001) Colonizing strategies and diapause of planktonic rotifers (Monogononta, Rotifera) during aquatic and terrestrial phases in a floodplain (Lower Oder Valley, Germany). Int Rev Hydrobiol 86:635–660CrossRefGoogle Scholar
  81. Signor CA, Pinho JB (2011) Spatial diversity patterns of birds in a vegetation mosaic of the Pantanal, Mato Grosso, Brazil. Zoologia 28(6):725–738CrossRefGoogle Scholar
  82. Silva JSV, Seidl AF, Moraes AS (2000) Evolucao da agropecuaria do Pantanal Brasileiro, 1975–1985. EMBRAPA-CPAP, CorumbaGoogle Scholar
  83. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, García-Berthou E, Pascal M, Pysek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28(1):58–66Google Scholar
  84. Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30(1):3–12CrossRefGoogle Scholar
  85. Sokal RR, Rohlf JF (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman, New YorkGoogle Scholar
  86. Sommer TR, Nobriga ML, Harrell WC, Batham W, Kimmerer WJ (2001) Floodplain rearing of juvenile Chinook salmon: evidence of enhanced growth and survival. Can J Fish Aquat Sci 58(2):325–333CrossRefGoogle Scholar
  87. Steinman AD, Rosen BH (2000) Lotic–lentic linkages associated with Lake Okeechobee, Florida. J N Am Benthol Soc 19(4):733–741CrossRefGoogle Scholar
  88. Steinman AD, Conklin J, Bohlen PJ, Uzarski DG (2003) Influence of cattle grazing and pasture land use on macroinvertebrate communities in freshwater wetlands. Wetlands 23(4):877–889CrossRefGoogle Scholar
  89. Taylor CM, Warren ML (2001) Dynamics in species composition of stream fish assemblages: environmental variability and nested subsets. Ecology 82:2320–2330CrossRefGoogle Scholar
  90. Taylor PD, Hafrig L, Henein K, Merriam G (1993) Connectivity as a vital element of landscape structure. Oikos 68(571):573Google Scholar
  91. Theobald D, Crooks R, Norman J (2011) Assessing effects of land use on landscape connectivity: loss and fragmentation of western US forests. Ecol Appl 21(7):2445–2458PubMedCrossRefGoogle Scholar
  92. Thomaz SM, Dibble ED, Evangelista LR, Higuti J, Bini LM (2008) Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Fresh Biol 53(2):358–367Google Scholar
  93. Tockner K, Malard F, Ward JV (2000) An extension of the flood pulse concept. Hydrol Process 14:2861–2883CrossRefGoogle Scholar
  94. Tonn WM, Magnuson JJ (1982) Patterns in the species composition and richness of fish assemblages in northern Wisconsin lakes. Ecology 63:1149–1166CrossRefGoogle Scholar
  95. Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic perspective. Ecology 82(5):1205–1218CrossRefGoogle Scholar
  96. Walters DJJ, Kotze DC, O’Connor TG (2006) Impact of land use on vegetation composition, diversity, and selected soil properties of wetlands in the southern Drakensberg mountains, South Africa. Wetl Ecol Manag 14:329–348CrossRefGoogle Scholar
  97. Weaver MJ, Magnuson JJ, Clayton MK (1993) Analyses for differentiating littoral fish assemblages with catch data from multiple sampling gears. Trans Am Fish Soc 122:1111–1119CrossRefGoogle Scholar
  98. Zeilhofer P, Moura RM (2009) Hydrological changes in the northern Pantanal caused by the Manso dam: impact analysis and suggestions for mitigation. Ecol Eng 35(1):105–117CrossRefGoogle Scholar
  99. Zhao Q, Liu S, Deng L, Dong S, Yang Z, Yang J (2012) Landscape change and hydrologic alteration associated with dam construction. Int J Appl Earth Obs Geoinf 16:17–26Google Scholar
  100. Zimmerman D, Pavlik C, Ruggles A, Armstrong MP (1999) An experimental comparison of ordinary and universal Kriging and inverse distance weighting. Math Geol 31(4):375–389CrossRefGoogle Scholar
  101. Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Biologia de Água Doce e Pesca InteriorInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.Universidade Federal de Mato Grosso, Instituto de BiociênciasCuiabáBrazil
  3. 3.Coordenação de BiodiversidadeInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations