Landscape Ecology

, Volume 30, Issue 3, pp 415–428 | Cite as

Comparison of impacts of human activities and climate change on water quantity and quality in Finnish agricultural catchments

  • K. Rankinen
  • G. Gao
  • K. Granlund
  • J. Grönroos
  • L. Vesikko
Research Article



We studied the influence of human activities and climate change on water quantity and quality. Human activities included methods of agricultural policy, i.e. land use and management practices.


Finland started to follow EU’s agricultural policy in 1995. In this study our main objective was to find out whether the original targets of the Finnish Agri-Environmental Programme (FAEP) were achieved.


We analyzed trends in discharge, water quality and climate parameters in 37 years long time-series in two catchments. We focused on the suspended sediment and phosphorus concentrations and loads, the main interests to FAEP.


We found an increasing trend in mean annual temperature, especially in spring and late summer-early autumn. There was no statistical significant change in annual runoff. Increasing winter runoff in the other catchment could be explained by the increased number of days when temperature was above zero degrees making snowmelt possible. In this area high potential sediment delivery occurred in early winter. FAEP succeeded in decreasing the suspended sediment load by reduced tillage and wintertime vegetation cover. In controlling the phosphorus loads FAEP succeeded only in the catchment with erosion sensitive soils. In the catchment where soils were less sensitive for erosion increase in the dissolved reactive phosphorus load exceeded the benefits of the reduced particulate phosphorus load.


Climate change may increase the suspended sediment load by increasing winter runoff. Even then, instead of decreasing the suspended sediment loads FAEP should rather focus on dissolved nutrients as they cause eutrophication in receiving waters.


Agricultural policy Climate change Suspended sediment Phosphorus Reduced tillage Load calculation Trend analysis 



We would like to thank CLIMES project (the Cooperation Program of the Academy of Finland (No. 256231) and the Chinese Academy of Sciences (No. GJHZ1215)) and Ministry of Agriculture and Forestry in Finland for financing this study. Further, we would like to thank Dr. Petri Ekholm for commenting the manuscript.


  1. Aakkula J, Kuussaari M, Rankinen K, Ekholm P, Heliölä J, Hyvönen T, Kitti T, Salo T (2012) Follow-Up Study On The Impacts Of Agri-Environmental Measures In Finland. In: OECD (ed), Evaluation of Agri-Environmental Policies Selected Methodological Issues and Case Studies. OECD publishing, pp111–127Google Scholar
  2. Aura E, Saarela K, Räty M (2006) Savimaiden eroosio. MTT:n selvityksiä 118, p32Google Scholar
  3. Bengtsson L, Seuna P, Lepistö A, Saxena RK (1992) Particle movement of melt water in a subdrained agricultural basin. J Hydrol 135:383–398CrossRefGoogle Scholar
  4. Daloğlu I, Cho KH, Scavia D (2012) Evaluating causes of trends in long-term dissolved reactive phosphorus loads to lake erie. Environ Sci Technol 46:10660–10666CrossRefPubMedGoogle Scholar
  5. Ekholm P (1994) Bioavailability of phosphorus in agriculturally loaded rivers in southern finland. Hydrobiologia 287(2):179–194CrossRefGoogle Scholar
  6. Hirsch RM, Moyer DL, Archfield SA (2010) Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake Bay river inputs. J Am Water Resour Assoc 46(5):859–880CrossRefGoogle Scholar
  7. Jetten V, de Roo A, Favis-Mortlock D (1999) Evaluation of field scale and catchment scale soil erosion models. Catena 37:521–541CrossRefGoogle Scholar
  8. Jetten V, Govers G, Hessel R (2003) Erosion models: quality of spatial predictions. Hydrol Process 17:887–900CrossRefGoogle Scholar
  9. Jylhä K, Ruosteenoja K, Räisänen J, Venäläinen A, Tuomenvirta H, Ruokolainen L, Saku S, Seitola T (2009) Arvioita Suomen muuttuvasta ilmastosta sopeutumistutkimuksia varten. In: Ilmatieteen laitos (ed) ACCLIM-hankkeen raportti 2009. Raportteja 2009:4, p114Google Scholar
  10. Korhonen J, Haavanlammi E (2012) Hydrologinen vuosikirja 2006–2012. Suomen ympäristö 8/2012Google Scholar
  11. Libiseller C, Grimvall A (2002) Performance of partial Mann–Kendall tests for trend detection in the precence of covariates. Environmetrics 13:71–84CrossRefGoogle Scholar
  12. Lilja H, Uusitalo R, Yli-Halla M, Nevalainen R, Väänänen T, Tamminen P (2006) Suomen maannostietokanta. Maannoskartta 1:250 000 ja maaperän ominaisuuksia. MTT:n selvityksiä 114Google Scholar
  13. Mattila P, Rankinen K, Grönroos J, Siimes K, Karhu E, Laitinen P, Granlund K, Ekholm P, Antikainen R (2007) Viljelytoimenpiteet ja vesistökuormitus ympäristötukitiloilla vuosina 2003–2005. Suomen ympäristö 40Google Scholar
  14. Ministry of Agriculture and Forestry (2012) How to provide for the inevitable climate change. Summary of the Finnish adaption study on different fields of operation. Publications of Ministry of Agriculture and Forestry 6/2011Google Scholar
  15. Ministry of the Environment (2005) Itämeren ja sisäverien suojelun tavoiteohjelma. Suomen ympäristö 771Google Scholar
  16. MSFD (2008) Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union L 164/19Google Scholar
  17. Muukkonen P, Hartikainen H, Lahti K, Särkelä A, Puustinen M, Alakukku L (2007) Influence of no-tillage on the distribution and lability of phosphorus in Finnish clay soils. Agric Ecosyst Environ 120:299–306CrossRefGoogle Scholar
  18. Niemi J, Heinonen P, Mitikka S, Vuoristo H, Pietiläinen O-P, Puupponen M, Rönkä, E (eds) (2001) The Finnish Eurowaternet with information about Finnish water resources and monitoring strategies. Vol. 445. Finnish Environment, pp 62Google Scholar
  19. Palva R, Rankinen K, Granlund K, Grönroos J, Nikander A, Rekolainen S (2001) Maatalouden ympäristötuen toimenpiteiden toteutuminen ja vaikutukset vesistökuormitukseen vuosina 1995–1999. MYTVAS-projektin loppuraportti. Suomen ympäristö 478Google Scholar
  20. Peltonen-Sainio P, Jauhiainen L, Hyövelä M, Nissilä E (2009) Trade-off between oil and protein in rapeseed at high latitudes: means to consolidate protein crop status? Field Crop Res 121(2):248–255CrossRefGoogle Scholar
  21. Pietiläinen O-P, Ekholm P (1992) Origin of eroded material in a small agricultural drainage basin in southwestern Finland. Aqua Fenn 22:105–110Google Scholar
  22. Pietiläinen O-P, Räike A (1999) Typpi ja fosfori Suomen sisävesien minimiravinteena. Suomen ympäristö 313Google Scholar
  23. Pietiläinen O-P, Rekolainen S (1991) Dissolved reactive and total phosphorus load from agricultural and forested basins to surface waters in Finland. Aqua Fenn 21:127–136Google Scholar
  24. Puustinen M, Koskiaho J, Peltonen K (2005) Influence of cultivation methods on suspended solids and phosphorus concentrations in surface runoff on clayey sloped fields in boreal climate. Agric Ecosyst Environ 105(4):565–579CrossRefGoogle Scholar
  25. Puustinen M, Tattari S, Koskiaho J, Linjama J (2007) Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil Tillage Res 93:44–55CrossRefGoogle Scholar
  26. Räsänen A (2010) Kiintoaineen ja kasviravinteiden vesistökuormituksen riskialuekartoitus Aurajoen valuma-alueella. Master’s Thesis, University of JyväskyläGoogle Scholar
  27. Rekolainen S (1989) Effect of snow and soil frost melting on the concentrations of suspended solids and phosphorus in two rural watersheds in western Finland. Aquat Sci 51(3):211–223CrossRefGoogle Scholar
  28. Renard KG, Foster GR, Yoder DC, McCool DK (1994) RUSLE revisited: Status, questions, answers, and the future. J Soil Water Conserv 49:213–220Google Scholar
  29. Reutter JM, Ciborowski J, Depinto JV, Bade D, Baker DB, Bridgeman TB, Culver DA, Davis S, Dayton E, Kane D, Mullen RW, Pennuto CM (2011) Lake Erie nutrient loading and harmful algal blooms: research findings and management imlications. Final report of the Lake Erie millenium networl synthesis team, OHSU-TS-060, The Ohio State UniversityGoogle Scholar
  30. Richards RP, Baker DB, Crumrine JP (2009) Improved water quality in Ohio tributaries to Lake Erie: a consequence of conservation practices. J Soil Water Conserv 64(3):200–211CrossRefGoogle Scholar
  31. Ruosteenoja K, Jylhä K (2007) Temperature and precipitation projections for Finland based on climate models employed in the IPCC 4th assessment report. Third international conference on climate and water, Helsinki, Finland, 3–6 September 2007, Proceedings, pp 404–406Google Scholar
  32. Salmi T, Määttä A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates—the excel template application MAKESENS. Publications on air quality No 31Google Scholar
  33. Sharpley AN, Rekolainen S (1997) Phosphorus in agriculture and its environmental implications. In: Tunney H, Carton OT, Brookes PC, Johnston AE (eds) Phosphorus loss from soil to water. CAB International Press, Cambridge, pp 1–54Google Scholar
  34. Tamminen T, Andersen T (2007) Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Mar Ecol Prog Ser 340:121–138Google Scholar
  35. Tiainen J, Kuussaari M, Laurila IP, Toivonen T (2004) Elämää pellossa. Suomen maatalousympäristön monimuotoisuus. Edita, HelsinkiGoogle Scholar
  36. Tike (2009) Yearbook of farm statistics. Agriculture, forestry and fishery 2009Google Scholar
  37. Tuomenvirta H (2004) Reliable estimation of climatic variations in Finland. Finnish Meteorological Institute Contributions No 43Google Scholar
  38. Ulén B, Aronsson H, Bechmann M, Krogstad T, Øygarden L, Stenberg M (2010) Soil tillage methods to control phosphorus loss and potential side-effects: a Scandinavian review. Soil Use Manag 26:94–107CrossRefGoogle Scholar
  39. Uusi-Kämppä J, Jauhiainen L (2010) Long-term monitoring of buffer zone efficiency under different cultivation techniques in boreal conditions. Agric Ecosyst Environ 137:75–85CrossRefGoogle Scholar
  40. Valpasvuo-Jaatinen P, Rekolainen S, Latostenmaa H (1997) Finnish agriculture and its sustainability: environmental impacts. Ambio 26(7):448–455Google Scholar
  41. Veijalainen N, Lotsari E, Alho P, Vehviläinen B, Käyhkö J (2010) National scale assessment of climate change impacts on flooding in Finland. J Hydrol 391:333–350CrossRefGoogle Scholar
  42. WFD (2000) Water framework directive. Directive 2000/60/EC of the European Parliament and the council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Community L 327:1–7Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • K. Rankinen
    • 1
  • G. Gao
    • 2
  • K. Granlund
    • 1
  • J. Grönroos
    • 1
  • L. Vesikko
    • 1
  1. 1.Finnish Environment InstituteHelsinkiFinland
  2. 2.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations