Landscape Ecology

, Volume 30, Issue 5, pp 805–816 | Cite as

Modeling direct and indirect climate change impacts on ecological networks: a case study on breeding habitat of Dutch meadow birds

  • Jerry van Dijk
  • Roland E. van der Vliet
  • Harm de Jong
  • Maarten J. Zeylmans van Emmichoven
  • Henk A. van Hardeveld
  • Stefan C. Dekker
  • Martin J. Wassen
Research Article



Climate change can directly affect habitats within ecological networks, but may also have indirect effects on network quality by inducing land use change. The relative impact of indirect effects of climate change on the quality of ecological networks currently remains largely unknown.


The objective of this study was to determine the relative impact of direct and indirect effects of climate change on a network of breeding habitat of four meadow bird species (Black-tailed godwit, Common redshank, Eurasian oystercatcher and Northern lapwing) in the Netherlands.


Habitat models were developed that link meadow bird breeding densities to three habitat characteristics that are sensitive to environmental change (landscape openness, land use and groundwater level). These models were used to assess the impact of scenarios of landscape change with and without climate change on meadow bird breeding habitat quality for a case study area in the peat meadow district of the Netherlands.


All scenarios led to significantly reduced habitat quality for all species, mainly as a result of conversion of grassland to bioenergy crops, which reduces landscape openness. Direct effects of climate change on habitat quality were largely absent, indicating that especially human adaptation to climate change rather than direct effects of climate change was decisive for the degradation of ecological network quality for breeding meadow birds.


We conclude that scenario studies exploring impacts of climate change on ecological networks should incorporate both land use change resulting from human responses to climate change and direct effects of climate change on landscapes.


Black-tailed godwit Common redshank Eurasian oystercatcher Northern lapwing Bioenergy crops Land use change 



JvD was financially supported by the Climate Adaptation for Rural Areas (CARE) Project, which was funded by the Knowledge for Climate Programme ( SOVON Vogelonderzoek Nederland provided the Dutch relative bird density datasets. Harry Dijkstra, Jetty van Lith-Kranendonk and Jaco van der Gaast (all Alterra Wageningen) provided the openness and groundwater datasets. Mara Baudena kindly assisted with programming the reclassification of the openness maps. Paul Opdam gave very useful suggestions for the presentation of the manuscript.

Supplementary material

10980_2014_140_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Anderson DR, Link WA, Johnson DH, Burnham KP (2001) Suggestions for presenting the results of data analyses. J Wildl Manag 65:373–378CrossRefGoogle Scholar
  2. Bakker M, Alam SJ, Van Dijk J, Rounsevell M, Spek T, Van den Brink A (2014) The feasibility of implementing an ecological network in The Netherlands under conditions of global change. Landscape Ecol. doi: 10.1007/s10980-014-0145-5
  3. Barbet-Massin M, Thuiller W, Jiguet F (2012) The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob Change Biol 18:881–890CrossRefGoogle Scholar
  4. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife International, CambridgeGoogle Scholar
  5. BirdLife International (2014) Species factsheet: Limosa limosa. Accessed July 2014
  6. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  7. Burrows MT, Schoeman DS, Buckley LB, Moore P, Poloczanska ES, Brander KM, Brown C, Bruno JF, Duarte CM, Halpern BS, Holding J, Kappel CV, Kiessling W, OÇonner MI, Pandolfi JM, Parmesan C, Schwing FB, Sydeman WJ, Richardson AJ (2011) The pace of shifting climate in marine and terrestrial ecosystems. Science 334:652–655CrossRefPubMedGoogle Scholar
  8. Dale VH, Efroymson RA, Kline KL (2011) The land use-climate change-energy nexus. Landscape Ecol 26:755–773CrossRefGoogle Scholar
  9. De Vos JA, Van Bakel PJT, Hoving IE, Conijn JG (2006) Waterpas-model: a predictive tool for water management, agriculture and environment. Agric Water Manag 86:187–195CrossRefGoogle Scholar
  10. Dijkstra H, van Lith-Kranendonk J (2000) Schaalkenmerken van het landschap in Nederland. Monitoring Kwaliteit Groene Ruimte (MKGR). Alterra-report 040. Alterra, WageningenGoogle Scholar
  11. Diniz-Filho JAF, Rangel TFLVB, Bini LM (2008) Model selection and information theory in geographical ecology. Glob Ecol Biogeogr 17:479–488CrossRefGoogle Scholar
  12. Dyrcz A, Witkowsk J, Okulewicz J (1981) Nesting of ‘timid’ waders in the vicinity of ‘bold’ ones as an antipredator adaptation. Ibis 123:542–545CrossRefGoogle Scholar
  13. Field A (2009) Discovering statistics using SPSS, 3rd edn. SAGE Publications Ltd, LondonGoogle Scholar
  14. Gaucherel C, Griffon S, Misson L, Houet T (2010) Combining process-based models for future biomass assessment at landscape scale. Landscape Ecol 25:201–215CrossRefGoogle Scholar
  15. Hawkins BA (2012) Eight (and a half) deadly sins of spatial analysis. J Biogeogr 39:1–9CrossRefGoogle Scholar
  16. Hoogland T, Van den Akker JJH, Brus DJ (2012) Modeling the subsidence of peat soils in the Dutch coastal area. Geoderma 171–172:92–97CrossRefGoogle Scholar
  17. Jongsomjit D, Stralberg D, Gardali T, Salas L, Wiens J (2013) Between a rock and a hard place: the impacts of climate change and housing development on breeding birds in California. Landscape Ecol 28:187–200CrossRefGoogle Scholar
  18. Kanellopoulos A, Reidsma P, Wolf J, Van Ittersum MK (2014) Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: an application of benchmarking and bio-economic farm modelling. Eur J Agron 52:69–80CrossRefGoogle Scholar
  19. Kleijn D, Schekkerman H, Dimmers WJ, Van Kats RJM, Melman D, Teunissen WA (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152:475–486CrossRefGoogle Scholar
  20. Kuhlman T, Diogo V, Koomen E (2013) Exploring the potential of reed as a bioenergy crop in the Netherlands. Biomass Bioenergy 55:41–52CrossRefGoogle Scholar
  21. Londo M, Vleeshouwers L, Dekker J, De Graaf H (2001) Energy farming in Dutch desiccation abatement areas: yields and benefits compared to grass cultivation. Biomass Bioenergy 20:337–350CrossRefGoogle Scholar
  22. Mandryk M, Reidsma P, Van Ittersum MK (2012) Scenarios of long-term farm structural change for application in climate change impact assessment. Landscape Ecol 27:509–527CrossRefGoogle Scholar
  23. Melman ThCP, Schotman AGM, Hunink S, De Snoo GR (2008) Evaluation of meadow bird management, especially black-tailed godwit (Limosa limosa L.), in the Netherlands. J Nat Conserv 16:88–95CrossRefGoogle Scholar
  24. Mustin K, Sutherland WJ, Gill JA (2007) The complexity of predicting climate-induced ecological impacts. Clim Res 35:165–175CrossRefGoogle Scholar
  25. Opdam P, Luque S, Jones KB (2009) Changing landscapes to accommodate for climate change impacts: a call for landscape ecology. Landscape Ecol 24:715–721CrossRefGoogle Scholar
  26. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 412:37–42CrossRefGoogle Scholar
  27. Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. B Am Meteorol Soc 81:443–450CrossRefGoogle Scholar
  28. Parmesan C, Burrows MT, Duarte CM, Poloczanska ES, Richardson AJ, Schoeman DS, Singer MC (2013) Beyond climate change attribution in conservation and ecological research. Ecol Lett 16:58–71CrossRefPubMedGoogle Scholar
  29. Querner EP, Jansen PC, Van den Akker JJH, Kwakernaak C (2012) Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. J Hydrol 446:59–69CrossRefGoogle Scholar
  30. Riordan EC, Rundel PW (2014) Land use compounds habitat losses under projected climate change in a threatened California Ecosystem. PLoS One 9:e86487CrossRefPubMedCentralPubMedGoogle Scholar
  31. Runhaar HJ, Witte JPM, Verburg PH (1997) Ground-water level, moisture supply, and vegetation in the Netherlands. Wetlands 17:528–538CrossRefGoogle Scholar
  32. Sovon VN (2002) Atlas van de Nederlandse broedvogels 1998–2000. Nederlandse fauna 5. Nationaal Natuurhistorisch Museum Naturalis, KNNV Uitgeverij and European Invertebrate Survey-Nederland, LeidenGoogle Scholar
  33. SPSS Inc. (2009) PASW Statistics for Windows, Version 18.0. SPSS inc., ChicagoGoogle Scholar
  34. Thunnissen HAM, De Wit AJW (2000) The national land cover database of the Netherlands. In: Beek KJ, Molenaar M (eds) Geoinformation for all. XIX congress of the International Society for Photogrammetry and Remote Sensing, Amsterdam, July 2000, International Archives of Photogrammetry and Remote Sensing, vol 13. ISPRS Amsterdam, pp 223–230Google Scholar
  35. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc B Biol Sci 270:467–473CrossRefGoogle Scholar
  36. Van Bodegom PM, Verboom J, Witte JPM, Vos CC, Bartholomeus RP, Geertsema W, Cormont A, Van der Veen M, Aerts R (2014) Synthesis of ecosystem vulnerability to climate change in the Netherlands shows the need to consider environmental fluctuations in adaptation measures. Reg Environ Change 14:933–942Google Scholar
  37. Van den Hurk B, Klein Tank A, Lenderink G, Van Ulden A, Van Oldenborgh GJ, Katsman C, Van den Brink H, Keller F, Bessembinder J, Burgers G, Komen G, Hazeleger W, Drijfhout S (2006) KNMI climate changes scenarios 2006 for the Netherlands. Report number WR 2006-01. Royal Dutch Meteorological Institute, De BiltGoogle Scholar
  38. Van der Vliet RE, Schuller E, Wassen MJ (2008) Avian predators in a meadow landscape: consequences of their occurrence for breeding open-area birds. J Avian Biol 39:523–529CrossRefGoogle Scholar
  39. Van der Vliet RE, Van Dijk J, Wassen MJ (2010) How different landscape elements limit the breeding habitat of meadow bird species. Ardea 98:203–209CrossRefGoogle Scholar
  40. Van der Vliet RE, Oquiñena Valluerca I, Van Dijk J, Wassen MJ (2014) EU protection is inadequate for a declining flyway population of Black-tailed Godwit Limosa limosa: mismatch between future core breeding areas and present special protection areas. Bird Conserv Int. doi: 10.1017/S0959270914000100 Google Scholar
  41. Van Teeffelen AJA, Vos CC, Opdam P (2012) Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol Conserv 153:239–253CrossRefGoogle Scholar
  42. Van Teeffelen AJA, Vos CC, Jochem R, Baveco JM, Meeuwsen H, Hilbers JP (2014) The effectiveness of green infrastructure as a climate adaptation strategy for great crested newt in intensively-used landscapes. Landscape Ecol. doi: 10.1007/s10980-014-0079-y Google Scholar
  43. Van Turnhout C, Vogel R (1997) The new atlas of Dutch breeding birds 1998–2000. Bird Census News 10:26–32Google Scholar
  44. Verboom J, Schippers P, Cormont A, Sterk M, Vos CC, Opdam PFM (2010) Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria. Landscape Ecol 25:1289–1298CrossRefGoogle Scholar
  45. Verhulst J, Kleijn D, Berendse F (2007) Direct and indirect effects of the most widely implemented Dutch agri-environment schemes on breeding waders. J Appl Ecol 44:70–80CrossRefGoogle Scholar
  46. Vogelzang TA, Venema GS, De Bont CJAM, Wisman JH, Van Leeuwen MGA (2009) Boeren in het Groene Hart; Kansen voor het agrocluster. Report number 2009–012. LEI Wageningen UR, The HagueGoogle Scholar
  47. Vos CC, Berry P, Opdam P, Baveco H, Nijhof B, O’Hanley J, Bell C, Kuipers H (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731CrossRefGoogle Scholar
  48. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP (2006) Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75:1182–1189CrossRefPubMedGoogle Scholar
  49. Witte JPM, Bartholomeus RP, Van Bodegom PM, Cirkel DG, Van Ek R, Fujita Y, Janssen GMCM, Spek TJ, Runhaar H (2014) A probabilistic eco-hydrological model to predict the effects of climate change on natural vegetation at a regional scale. Landscape Ecol. doi: 10.1007/s10980-14-0086-z

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jerry van Dijk
    • 1
  • Roland E. van der Vliet
    • 1
    • 4
  • Harm de Jong
    • 2
  • Maarten J. Zeylmans van Emmichoven
    • 3
  • Henk A. van Hardeveld
    • 1
    • 2
  • Stefan C. Dekker
    • 1
  • Martin J. Wassen
    • 1
  1. 1.Environmental Sciences, Copernicus Institute of Sustainable Development, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  2. 2.District Water Control Board De Stichtse RijnlandenHoutenThe Netherlands
  3. 3.Department of Physical Geography, Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands
  4. 4.TauwUtrechtThe Netherlands

Personalised recommendations