Skip to main content

Advertisement

Log in

Evaluating connectivity between Natura 2000 sites within the montado agroforestry system: a case study using landscape genetics of the wood mouse (Apodemus sylvaticus)

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

The Natura 2000 network is the centerpiece of European nature conservation policy but its effectiveness is challenged by ongoing landscape change.

Objective

Our objective was to assess landscape connectivity between Natura 2000 sites in the biodiversity-rich western Mediterranean region.

Methods

We used the wood mouse as a focal species with short-range dispersal and obtained genetic data for 393 individuals uniformly distributed between two Natura 2000 sites in SW Portugal. We created a map of connectivity between the two sites that was based on a stack of analyses including reciprocal causal modeling and least-cost path modeling coupled with resistant kernel analysis.

Results

Wood mice in the study area were genetically diverse and connected by gene flow over a large area. We did not find evidence of major population subdivision in the study area. Gene flow was limited by geographic distance, with significant genetic similarity between individuals within 3 km of each other. Vegetation cover and land use explained more of the variation in genetic distance than geographic distance alone. In particular, agroforestry areas and transitional woodland were associated with higher costs to movement than forest or arable land uses. This result may have been influenced by the difficulty in classifying land use in the open montado.

Conclusions

The Natura 2000 sites we studied are well connected by multiple corridors for dispersal. Our analysis also highlighted the importance of the Serra de Grândola, part of the European Long Term Ecological Research Network but not yet included in Natura 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriaensen F, Chardon JP, de Blust G, Swinnen E, Villalba S, Gulinck H, Matthysen E (2003) The application of least-cost modelling as a functional landscape model. Landsc Urban Plan 64:233–247

    Article  Google Scholar 

  • Alagador D, Triviño M, Orestes Cerdeira J, Brás R, Cabeza M, Araújo MB (2012) Linking like with like: optimising connectivity between environmentally-similar habitats. Landscape Ecol 27:291–301

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program structure. Mol Ecol Res 8:1219–1229

    Article  CAS  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Chang Biol 11:1504–1513

    Article  Google Scholar 

  • Araújo M, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  PubMed Central  PubMed  Google Scholar 

  • Ascensão F, Clevenger AP, Grilo C, Filipe J, Santos-Reis M (2012) Highway verges as habitat providers for small mammals in agrosilvopastoral environments. Biodivers Conserv 21:3681–3697

    Article  Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326

    Article  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Lab Gén, Popul, Interact, CNRS UMR 5000:1996–2004

    Google Scholar 

  • Bennett AF, Saunders DA (2010) Habitat fragmentation and landscape change. In: Sodhi NS, Ehrlich PR (eds) Conservation biology for all. Oxford University Press, Oxford, pp 88–106

  • Berckmoes V, Scheirs J, Jordaens K, Stevens VM, Turlure C (2005) Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus sylvaticus) populations. Environ Toxicol Chem 24:2898–2907

    Article  CAS  PubMed  Google Scholar 

  • Blair C, Weigel DE, Balazik M, Keeley ATH, Walker FM, Landguth E, Cushman SA, Murphy M, Waits L, Balkenhol N (2012) A simulation-based evaluation of methods for inferring barriers to gene flow. Mol Ecol Res 12:822–833

    Article  Google Scholar 

  • Blaum N, Wichmann MC (2007) Short-term transformation of matrix into hospitable habitat facilitates gene flow and mitigates fragmentation. J Anim Ecol 76:1116–1127

    Article  PubMed  Google Scholar 

  • Blondel J (2006) The ‘design’ of Mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Article  Google Scholar 

  • Bonnet E, van de Peer Y (2002) ZT: a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12

    Google Scholar 

  • Booth W, Montgomery WI, Prodöhl PA (2009) Spatial genetic structuring in a vagile species, the European wood mouse. J Zool 279:219–228

    Article  Google Scholar 

  • Büttner G, Feranec J, Jaffrain G (2006) CORINE land cover nomenclature illustrated guide—addendum 2006. Instituto Geográfico Português

  • Caetano M, Mata F, Freire S, Campagnolo M (2006) Accuracy assessment of the Portuguese CORINE Land Cover map. In: global developments in environmental earth observation from space. Proceedings of the 25th EARSeL Symposium, Porto, Portugal, 2005. Millpress, Rotterdam, pp 459–467

  • Carlsson J (2008) Effects of microsatellite null alleles on assignment testing. J Hered 99:616–623

    Article  CAS  PubMed  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Compton BW, McGsarigal K, Cushman SA, Gamble LR (2007) A resistant-kernel model of connectivity for amphibians that breed in vernal pools. Conserv Biol 21:788–799

    Article  PubMed  Google Scholar 

  • Costa A, Pereira H, Madeira M (2009) Landscape dynamics in endangered cork oak woodlands in Southwestern Portugal (1958–2005). Agrofor Syst 77:83–96

    Article  Google Scholar 

  • Costa A, Madeira M, Lima Santos J, Oliveira A (2011) Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula. Landsc Urban Plan 102:164–176

    Article  Google Scholar 

  • Costa A, Madeira M, Plieninger T (2014) Cork oak woodlands patchiness: a signature of imminent deforestation? Appl Geogr 54:18–26

    Article  Google Scholar 

  • Coulon A, Guillot G, Cosson JF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    Article  CAS  PubMed  Google Scholar 

  • Cox RL, Underwood EC (2011) The importance of conserving biodiversity outside of protected areas in Mediterranean ecosystems. PLoS ONE 6:e14508

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Lewis JS, Landguth EL (2013a) Evaluating the intersection of a regional wildlife connectivity network with highways. Mov Ecol 1:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Cushman SA, Wasserman T, Landguth E, Shirk A (2013b) Re-Evaluating causal modeling with mantel tests in landscape genetics. Diversity 5:51–72

    Article  Google Scholar 

  • Cushman SA, Max T, Whitham T, Allan GJ (2014) River network connectivity and climate gradients drive genetic differentiation in a riparian foundation tree. Ecol Appl 24:1000–1014

    Article  PubMed  Google Scholar 

  • Díaz M, Torre I, Peris A, Tena L (2005) Foraging behaviour of wood mice as related to presence and activity of genets. J Mammal 86:1178–1185

    Article  Google Scholar 

  • Earl DA, VonHoldt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • EEA (2010) 10 messages for 2010 agricultural ecosystems. EEA, Denmark

    Google Scholar 

  • Epperson BK (2005) Estimating dispersal from short distance spatial autocorrelation. Heredity 95:7–15

    Article  CAS  PubMed  Google Scholar 

  • Feranec J, Jaffrain G, Soukup T, Hazeu G (2010) Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl Geogr 30:19–35

    Article  Google Scholar 

  • Gaston KJ, Jackson SF, Cantú Salazar L, Cruz-Piñon G (2008) The ecological performance of protected areas. Annu Rev Ecol Evol S 39:93–113

    Article  Google Scholar 

  • Gauffre B, Estoup A, Bretagnolle V, Cosson JF (2008) Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol Ecol 17:4619–4629

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves P, Alcobia S, Luciana S, Santos-Reis M (2012) Effects of management options on mammal richness in a Mediterranean agro-silvo-pastoral system. Agroforest Syst 85:383–395

    Article  Google Scholar 

  • Gortat T, Gryczyńska Siemiątkowska A, Rutkowski R, Kozakiewicz A, Mikoszewski A, Kozakiewicz M (2010) Landscape pattern and genetic structure of a yellow-necked mouse Apodemus flavicollis population in north-eastern Poland. Acta Theriol 55:109–121

    Article  Google Scholar 

  • Gortat T, Rutkowski R, Gryczyńska Siemiątkowska A, Kozakiewicz, Kozakiewicz M (2012) Genetic structure in urban and rural populations of Apodemus agrarius in Poland. Mammal Biol 78:171–177

  • Goslee SC, Urban DL (2007) The ECODIST package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Google Scholar 

  • Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815

    Article  Google Scholar 

  • Grilo C, Bissonette JA, Santos-Reis M (2009) Spatial–temporal patterns in Mediterranean carnivore road casualties: consequences for mitigation. Biol Conserv 142:301–313

    Article  Google Scholar 

  • Gu X-D, Liu S-Y, Wang Y-Z, Wu H (2009) Development and characterization of eleven polymorphic microsatellite loci from South China field mouse (Apodemus draco). Conserv Genet 10:1961–1963

    Article  CAS  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Harr B, Musolf K, Gerlach G (2000) Characterization and isolation of DNA microsatellite primers in wood mice (Apodemus sylvaticus, Rodentia). Mol Ecol Notes 9:1664–1665

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holzhauer SIJ, Ekschmitt K, Sander A, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landsc Ecol 21:891–899

    Article  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Res 9:1322–1332

    Article  Google Scholar 

  • Joffre R, Rambal S, Ratte JP (1999) The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforest Syst 45:57–79

    Article  Google Scholar 

  • Jongman RHG, Bouwma IM, Griffioen A, Jones-Walters L, van Doorn AM (2011) The pan European ecological network: PEEN. Landsc Ecol 26:311–326

    Article  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ml-relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Klaa K, Mill PJ, Incoll LD (2005) Distribution of small mammals in a silvoarable agroforestry system in Northern England. Agroforest Syst 63:101–110

    Article  Google Scholar 

  • Koen EL, Bowman J, Walpole AA (2012) The effect of cost surface parameterization on landscape resistance estimates. Mol Ecol Res 12:686–696

    Article  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191

  • Landguth EL, Hand BK, Glassy J, Cushman SA, Sawaya MA (2012) UNICOR: a species connectivity and corridor network simulator. Ecography 35:9–14

    Article  Google Scholar 

  • Maiorano L, Falcucci A, Garton EO, Boitani L (2007) Contribution of the Natura 2000 network to biodiversity conservation in Italy. Conserv Biol 21:1433–1444

    Article  PubMed  Google Scholar 

  • Makova KD, Patton JC, Krysanov EY, Chesser RK, Baker RJ (1998) Microsatellite markers in wood mouse and striped field mouse (genus Apodemus). Mol Ecol 7:247–255

    Article  CAS  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McRae BH (2006) Isolation by Resistance. Evolution 60:1551–1561

    Article  PubMed  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. PNAS 104:19885–19890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean basin: setting global conservation priorities. Conserv Biol 13:1510–1513

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Measuring differentiation: gst and related statistics. Mol Ecol Res 11:5–18

    Article  Google Scholar 

  • Meirmans PG, van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Michaux JR, Magnanou E, Paradis E, Nieberding C, Libois R (2003) Mitochondrial phylogeography of the wood mouse (Apodemus sylvaticus) in the Western Palearctic region. Mol Ecol 12:685–697

    Article  CAS  PubMed  Google Scholar 

  • Mossman CA, Waser PM (2001) Effects of habitat fragmentation on population genetic structure in the white-footed mouse (Peromyscus leucopus). Can J Zool 79:285–295

    Article  Google Scholar 

  • Mullins J, McDevitt AD, Kowalczyk R, Ruczyńska I, Górny M, Wójcik JM (2014) The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland. Acta Theriol 59:367–376

  • Munshi-South J, Kharchenko K (2010) Rapid, pervasive genetic differentiation of urban white-footed mouse (Peromyscus leucopus) populations in New York City. Mol Ecol 19:4242–4254

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Olea L, San Miguel-Ayanz A (2006) The Spanish dehesa. A traditional Mediterranean silvopastoral system linking production and nature conservation. Grassl Sci Eur 11:3–13

    Google Scholar 

  • Panzacchi M, Linnell JDC, Melis C, Odden M, Odden J, Gorini L, Andersen R (2010) Effect of land-use on small mammal abundance and diversity in a forest–farmland mosaic landscape in south-eastern Norway. For Ecol Manag 259:1536–1545

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195

    Article  PubMed  Google Scholar 

  • Pereira PM, Pires da Fonseca M (2003) Nature vs nurture: the making of the montado ecosystem. Conservation Ecol 7:7

    Google Scholar 

  • Pinto Correia T (1993) Threatened landscape in Alentejo, Portugal: the ‘montado’and other ‘agro-silvo-pastoral’systems. Landsc Urban Plan 24:43–48

    Article  Google Scholar 

  • Pinto Correia T, Ribeiro N, Sá-Sousa P (2011) Introducing the montado, the cork and holm oak agroforestry system of Southern Portugal. Agroforest Syst 82:99–104

    Article  Google Scholar 

  • Pita R, Mira A, Beja P (2006) Conserving the cabrera vole, Microtus cabrerae, in intensively used Mediterranean landscapes. Agr Ecosyst Environ 115:1–5

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quéméré E, Crouau-Roy B, Rabarivola C, Louis EE, Chikhi L (2010) Landscape genetics of an endangered lemur (Propithecus tattersalli) within its entire fragmented range. Mol Ecol 19:1606–1621

    Article  PubMed  Google Scholar 

  • Quantum GIS Development Team (2012) Quantum GIS geographic information system. Open source geospatial foundation. Available at http://qgis.osgeo.org

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rico A, Kindlmann P, Sedláček F (2009) Can the barrier effect of highways cause genetic subdivision in small mammals? Acta Theriol 54:297–310

    Article  Google Scholar 

  • Rosalino LM, do Rosário J, Santos-Reis M (2009) The role of habitat patches on mammalian diversity in cork oak agroforestry systems. Acta Oecol 35:507–512

    Article  Google Scholar 

  • Rosalino LM, Ferreira D, Leitâo I, Santos-Reis M (2011a) Selection of nest sites by wood mice Apodemus sylvaticus in a Mediterranean agro-forest landscape. Ecol Res 26:445–452

    Article  Google Scholar 

  • Rosalino LM, Ferreira D, Leitâo I, Santos-Reis M (2011b) Usage patterns of Mediterranean agro-forest habitat components by wood mice Apodemus sylvaticus. Mammalian Biol 76:268–273

    Google Scholar 

  • Rousset (2000) Genetic differentiation between individuals. J Evolut Biol 13:58–62

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Notes 8:103–106

    Article  Google Scholar 

  • Sabino-Marques H, Mira A (2010) Living on the verge: are roads a more suitable refuge for small mammals than streams in Mediterranean pastureland? Ecol Res 26:277–287

    Article  Google Scholar 

  • Santos SM, Simões MP, da Luz Mathias M, Mira A (2006) Vegetation analysis in colonies of an endangered rodent, the Cabrera vole (Microtus cabrerae), in southern Portugal. Ecol Res 21:197–207

    Article  Google Scholar 

  • Schlitter D, van der Straeten E, Amori G, Hutterer R, Kryštufek B, Yigit N, Mitsain G (2008) Apodemus sylvaticus. In: IUCN 2013. IUCN Red List of Threatened Species. Version 2013.2. <www.iucnredlist.org>. Downloaded on 23 April 2014

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90

    Article  CAS  Google Scholar 

  • Shah VB, McRae BH (2008) Circuitscape: A tool for landscape ecology. In: Varoquaux G, Vaught T, Millman J (Eds) Proceedings of the 7th Python in Science conference (SciPy 2008), pp 62–66

  • Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    Article  CAS  PubMed  Google Scholar 

  • Silva PM, Aguiar CAS, Niemelä J, Sousa JP, Serrano ARM (2009) Cork-oak woodlands as key-habitats for biodiversity conservation in Mediterranean landscapes: a case study using rove and ground beetles (Coleoptera: Staphylinidae, Carabidae). Biodivers Conserv 18:605–619

    Article  Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Smouse PE, Peakall R, Gonzales E (2008) A heterogeneity test for fine-scale genetic structure. Mol Ecol 17:3389–3400

    Article  PubMed  Google Scholar 

  • Spear SF, Storfer A (2008) Landscape genetic structure of coastal tailed frogs (Ascaphus truei) in protected vs. managed forests. Mol Ecol 17:4642–4656

    Article  PubMed  Google Scholar 

  • Spear SF, Balkenhol N, Scribner KIM (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 3576–3591

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Landscape connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R (2014) biomod2: Ensemble platform for species distribution modeling. R package version 3-1.48 URL:http://CRAN.R-project.org/package=biomod2

  • Tsiafouli MA, Apostolopoulou E, Mazaris AD, Kallimanis AS, Drakou EG, Pantis JD (2013) Human activities in Natura 2000 sites: a highly diversified conservation NETWORK. Environ Manage 51:1025–1033

    Article  PubMed  Google Scholar 

  • van Doorn AM, Pinto Correia T (2007) Differences in land cover interpretation in landscapes rich in cover gradients: reflections based on the montado of South Portugal. Agroforest Syst 70:169–183

    Article  Google Scholar 

  • Vos CC, Berry P, Opdam P, Baveco H, Nijhof B, O’Hanley J, Bell C, Kuipers H (2008) Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J Appl Ecol 45:1722–1731

    Article  Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecol 25:1601–1612

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu H, Zhan XJ, Yan L, Liu SY, Li M, Hu JC, Wei FW (2008) Isolation and characterization of fourteen microsatellite loci for striped field mouse (Apodemus agrarius). Conserv Genet 9:1691–1693

    Article  CAS  Google Scholar 

  • Zeller KA, McGarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landscape Ecol 27:777–797

    Article  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers and Denise O’ Meara for their helpful comments on earlier drafts of this manuscript. Fabiana Marques and Ana Catarina Silva provided fieldwork support. This study was funded by the Portuguese Foundation for Science and Technology (FCT) projects PTDC/BIA-BEC/101511/2008 and LTER/BIA-BEC/0048/2009, and individual contracts C2007-UL-342-CBA1 (CF) and SFRH/BD/38053/2007 (FA). Fieldwork was carried out under license from the Portuguese Institute for Nature Conservation and Biodiversity (ICNB; Instituto da Conservação da Natureza e Biodiversidade).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacinta Mullins.

Additional information

J. Mullins and F. Ascensão are joint first authors and have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullins, J., Ascensão, F., Simões, L. et al. Evaluating connectivity between Natura 2000 sites within the montado agroforestry system: a case study using landscape genetics of the wood mouse (Apodemus sylvaticus). Landscape Ecol 30, 609–623 (2015). https://doi.org/10.1007/s10980-014-0130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-014-0130-z

Keywords

Navigation