Skip to main content

Advertisement

Log in

Using landscape epidemiological models to understand the distribution of chronic wasting disease in the Midwestern USA

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Animal movement across the landscape plays a critical role in the ecology of infectious wildlife diseases. Dispersing animals can spread pathogens between infected areas and naïve populations. While tracking free-ranging animals over the geographic scales relevant to landscape-level disease management is challenging, landscape features that influence gene flow among wildlife populations may also influence the contact rates and disease spread between populations. We used spatial diffusion and barriers to white-tailed deer gene flow, identified through landscape genetics, to model the distribution of chronic wasting disease (CWD) in the infected region of southern Wisconsin and northern Illinois, USA. Our generalized linear model showed that risk of CWD infection declined exponentially with distance from current outbreaks, and inclusion of gene flow barriers dramatically improved fit and predictive power of the model. Our results indicate that CWD is spreading across the Midwestern landscape from these two endemic foci, but spread is strongly influenced by highways and rivers that also reduce deer gene flow. We used our model to plot a risk map, providing important information for CWD management by identifying likely routes of disease spread and providing a tool for prioritizing disease monitoring and containment efforts. The current analysis may serve as a framework for modeling future disease risk drawing on genetic information to investigate barriers to spread and extending management and monitoring beyond currently affected regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander N, Moyeed R, Stander J (2000) Spatial modelling of individual-level parasite counts using the negative binomial distribution. Biostatistics 1:453–463

    Article  PubMed  CAS  Google Scholar 

  • Balkenhol N, Waits LP (2009) Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol Ecol 18:4151–4164

    Article  PubMed  Google Scholar 

  • Barlow N (1995) Critical evaluation of wildlife disease models. In: Grenfell ADPT (ed) Ecology of infectious diseases in natural populations. Cambridge University Press, Cambridge, pp 230–259

    Chapter  Google Scholar 

  • Biek R, Real LA (2010) The landscape genetics of infectious disease emergence and spread. Mol Ecol 19:3515–3531

    Article  PubMed  Google Scholar 

  • Bivand R, Altman M, Anselin L, Assunção R, Berke O, Bernat A, Blanchet G, Blankmeyer E, Carvalho M, Christensen B, Chun Y, Dormann C, Dray S, Halbersma R, Krainski E, Legendre P, Lewin-Koh N, Li H, Ma J, Millo G, Mueller W, Ono H, Peres-Neto P, Piras G, Reder M, Tiefelsdorf M, Yu D (2011) R Package ‘spdep’: spatial dependence: weighting schemes, statistics and models. http://cran.r-project.org/web/packages/spdep/index.html

  • Blanchong JA, Samuel MD, Scribner KT, Weckworth BV, Langenberg JA, Filcek KB (2008) Landscape genetics and the spatial distribution of chronic wasting disease. Biol Lett 4:130–133

    Article  PubMed  Google Scholar 

  • Breban R, Drake JM, Stallknecht DE, Rohani P (2009) The role of environmental transmission in recurrent avian influenza epidemics. PLoS Comput Biol 5:e1000346

    Article  PubMed  Google Scholar 

  • Brownstein JS, Rosen H, Purdy D, Miller JR, Merlino M, Mostashari F, Fish D (2002) Spatial analysis of West Nile virus: rapid risk assessment of an introduced vector-borne zoonosis. Vector-Borne Zoonotic Dis 2:157–164

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, Berlin

    Google Scholar 

  • Chuang TW, Hockett CW, Kightlinger L, Wimberly MC (2012) Landscape-level spatial patterns of West Nile Virus risk in the Northern Great Plains. Am J Trop Med Hyg 86:724–731

    Article  PubMed  Google Scholar 

  • Collinge SK, Johnson WC, Ray C, Matchett R, Grensten J, Cully JF Jr, Gage KL, Kosoy MY, Loye JE, Martin AP (2005) Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA. Landscape Ecol 20:941–955

    Article  Google Scholar 

  • Conner MM, Miller MW (2004) Movement patterns and spatial epidemiology of a prion disease in mule deer population units. Ecol Appl 14:1870–1881

    Article  Google Scholar 

  • Conner MM, Gross JE, Cross PC, Ebinger MR, Gillies RR, Samuel MD, Miller MW (2007) Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease. US Geological Survey

  • Coulon A, Guillot G, Cosson J-F, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AAJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    Article  PubMed  CAS  Google Scholar 

  • Cross PC, Lloyd Smith JO, Johnson PLF, Getz WM (2005) Duelling timescales of host movement and disease recovery determine invasion of disease in structured populations. Ecol Lett 8:587–595

    Article  Google Scholar 

  • Cullingham CI, Pond BA, Kyle CJ, Rees EE, Rosatte RC, White BN (2008) Combining direct and indirect genetic methods to estimate dispersal for informing wildlife disease management decisions. Mol Ecol 17:4874–4886

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach DR, Long ES, Rosenberry CS, Wallingford BD, Smith DR (2008) Modeling distribution of dispersal distances in male white-tailed deer. J Wildl Manage 72:1296–1303

    Article  Google Scholar 

  • Ezenwa VO, Milheim LE, Coffey MF, Godsey MS, King RJ, Guptill SC (2007) Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector-Borne Zoonotic Dis 7:173–180

    Article  PubMed  Google Scholar 

  • Farnsworth ML, Hoeting JA, Hobbs NT, Miller MW (2006) Linking chronic wasting disease to mule deer movement scales: a hierarchical Bayesian approach. Ecol Appl 16:1026–1036

    Article  PubMed  Google Scholar 

  • Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231

    Article  Google Scholar 

  • Fry JA, Coan MJ, Homer CG, Meyer DK, Wickham JD (2009) Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit product. U.S. Geological Survey Open-File Report 2008-1379

  • Galuzo I (1975) Landscape epidemiology (epizootiology). Adv Vet Sci Comp Med 19:73–96

    PubMed  CAS  Google Scholar 

  • Gesler W (1986) The uses of spatial analysis in medical geography: a review. Soc Sci Med 23:963–973

    Article  PubMed  CAS  Google Scholar 

  • Gilbert M, Mitchell A, Bourn D, Mawdsley J, Clifton-Hadley R, Wint W (2005) Cattle movements and bovine tuberculosis in Great Britain. Nature 435:491–496

    Article  PubMed  CAS  Google Scholar 

  • Glass GE, Cheek JE, Patz JA, Shields TM, Doyle TJ, Thoroughman DA, Hunt DK, Enscore RE, Gage KL, Irland C (2000) Using remotely sensed data to identify areas at risk for Hantavirus pulmonary syndrome. Emerg Infect Dis 6:238–247

    Article  PubMed  CAS  Google Scholar 

  • Grear DA, Samuel MD, Langenberg JA, Keane D (2006) Demographic patterns and harvest vulnerability of chronic wasting disease infected white-tailed deer in Wisconsin. J Wildl Manage 70:546–553

    Article  Google Scholar 

  • Grear DA, Samuel MD, Scribner KT, Weckworth BV, Langenberg JA (2010) Influence of genetic relatedness and spatial proximity on chronic wasting disease infection among female white-tailed deer. J Appl Ecol 47:532–540

    Article  CAS  Google Scholar 

  • Heisey DM, Osnas EE, Cross PC, Joly DO, Langenberg JA, Miller MW (2010) Linking process to pattern: estimating spatiotemporal dynamics of a wildlife epidemic from cross-sectional data. Ecol Monogr 80:221–240

    Article  Google Scholar 

  • Hess G, Randolph S, Arneberg P, Chemini C, Furlanello C, Harwood J, Roberts M, Swinton J (2002) Spatial aspects of disease dynamics. In: Hudson ARPJ, Grenfell BT, Heesterbeek H, Dobson AP (eds) The ecology of wildlife diseases. Oxford University Press, Oxford, pp 102–118

    Google Scholar 

  • Hickling GJ (2002) Dynamics of bovine tuberculosis in wild white-tailed deer in Michigan, Michigan Department of Natural Resources Wildlife Division, Report number 3363. Lansing, Michigan, USA

  • Hosseini PR, Dhondt AA, Dobson AP (2006) Spatial spread of an emerging infectious disease: conjunctivitis in house finches. Ecology 87:3037–3046

    Article  PubMed  Google Scholar 

  • Illinois Dept. Natural Resources (2003) Chronic wasting disease surveillance summary: status of CWD in Illinois. Forest Wildlife Program Illinois Department of Natural Resource

  • Jackson SD (2000) Overview of transportation impacts on wildlife movement and populations. In: Wildlife and highways: seeking solutions to an ecological and socio-economic dilemma. The Wildlife Society, Attachment to EPIC Comment Letter on 2006 RMP dated 10-23-06, pp. 7–20

  • Jennelle CS, Henaux V, Thiagarajan B, Wasserberg G, Rolley RE, Samuel MD. Transmission of chronic wasting disease in Wisconsin white-tailed deer: implications for disease spread and management (submitted-a)

  • Jennelle CS, Osnas EE, Samuel MD, Rolley RE, Langenberg JA, Russell R, Walsh DP, Heisey DM. Using auxiliary information to improve wildlife disease surveillance: a Bayesian approach (submitted-b)

  • Jenkins S, Winkler W (1987) Descriptive epidemiology from an epizootic of raccoon rabies in the Middle Atlantic States, 1982–1983. Am J Epidemiol 126:429–437

    PubMed  CAS  Google Scholar 

  • Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pedersen JA (2006) Prions adhere to soil minerals and remain infectious. PLoS Pathog 2:e32

    Article  PubMed  Google Scholar 

  • Joly DO, Ribic CA, Langenberg JA, Beheler K, Batha CA, Dhuey BJ, Rolley RE, Bartelt G, Van Deelen TR, Samuel MD (2003) Chronic wasting disease in free-ranging Wisconsin white-tailed deer. Emerg Infect Dis 9:599–601

    Article  PubMed  Google Scholar 

  • Joly DO, Samuel MD, Langenberg JA, Blanchong JA, Batha CA, Rolley RE, Keane DP, Ribic CA (2006) Spatial epidemiology of chronic wasting disease in Wisconsin white-tailed deer. J Wildl Dis 43:578–588

    Article  Google Scholar 

  • Jones K, Patel N, Levy M, Storeygard A, Balk D, Gittleman J, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    Article  PubMed  CAS  Google Scholar 

  • Kauffman MJ, Jules ES (2006) Heterogeneity shapes invasion: host size and environment influence susceptibility to a nonnative pathogen. Ecol Appl 16:166–175

    Article  PubMed  Google Scholar 

  • Keane DP, Barr DJ, Keller JE, Hall SM, Langenberg JA, Bochsler PN (2008) Comparison of retropharyngeal lymph node and obex region of the brainstem in detection of chronic wasting disease in white-tailed deer (Odocoileus virginianus). J Vet Diagn Investig 20:58–60

    Article  Google Scholar 

  • Kulldorff M, Nagarwalla N (1995) Spatial disease clusters: detection and inference. Stat Med 14:799–810

    Article  PubMed  CAS  Google Scholar 

  • Lang KR, Blanchong JA (2012) Population genetic structure of white-tailed deer: understanding risk of chronic wasting disease spread. J Wildl Manage 76:832–840

    Article  Google Scholar 

  • Langlois JP, Fahrig L, Merriam G, Artsob H (2001) Landscape structure influences continental distribution of Hantavirus in deer mice. Landscape Ecol 16:255–266

    Article  Google Scholar 

  • Linden A, Mantyniemi S (2011) Using the negative binomial distribution to model overdispersion in ecological count data. Ecology 92:1414–1421

    Article  PubMed  Google Scholar 

  • Long ES (2005) Landscape and demographic influences on dispersal of white-tailed deer. In: Intercollege Graduate Degree Program in Ecology, vol PhD. State College Pennsylvania, The Pennsylvania State University, University Park

  • Long ES, Diefenbach DR, Wallingford BD, Rosenberry CS (2010) Influence of roads, rivers, and mountains on natal dispersal of white-tailed deer. J Wildl Manage 74:1242–1249

    Google Scholar 

  • Mathiason C, Hays S, Powers J, Hayes-Klug J, Langenberg J, Dahmes S, Osborn D, Miller K, Warren R, Mason G (2009) Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS ONE 4:e5916

    Article  PubMed  Google Scholar 

  • McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modeled? Trends Ecol Evol 16:295–300

    Article  PubMed  Google Scholar 

  • McGinnis S, Kerans BL (2012) Land use and host community characteristics as predictors of disease risk. Landscape Ecol 28:1–16

    Google Scholar 

  • Meentemeyer RK, Haas SE, Vaclavik T (2012) Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu Rev Phytopathol 50:379–402

    Article  PubMed  CAS  Google Scholar 

  • Miller MW, Conner MM (2005) Epidemiology of chronic wasting disease in free-ranging mule deer: spatial, temporal, and demographic influences on observed prevalence patterns. J Wildl Dis 41:275–290

    Article  PubMed  Google Scholar 

  • Miller M, Williams E, Hobbs N, Wolfe L (2004) Environmental sources of prion transmission in mule deer. Emerg Infect Dis 10:1003–1006

    Article  PubMed  Google Scholar 

  • Moore DA (1999) Spatial diffusion of raccoon rabies in Pennsylvania, USA. Prev Vet Med 40:19–32

    Article  PubMed  CAS  Google Scholar 

  • Natural Resources Conservation Service (2012) United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for Wisconsin. http://soildatamart.nrcs.usda.gov. Accessed 05 Jan 2012

  • Nelson ME (1995) Winter range arrival and departure of white-tailed deer in northeastern Minnesota. Can J Zool 73:1069–1076

    Article  Google Scholar 

  • Nussey DH, Coltman DW, Coulson T, Kruuk LEB, Donald A, Morris SJ, Clutton-Brock TH, Pemberton AJ (2005) Rapidly declining fine-scale spatial genetic structure in female red deer. Mol Ecol 14:3395–3405

    Article  PubMed  CAS  Google Scholar 

  • Omernik JM (1987) Ecoregions of the conterminous United States. Ann Assoc Am Geogr 77:118–125

    Article  Google Scholar 

  • Osnas E, Heisey D, Rolley R, Samuel M (2009) Spatial and temporal patterns of chronic wasting disease: fine-scale mapping of a wildlife epidemic in Wisconsin. Ecol Appl 19:1311–1322

    Article  PubMed  Google Scholar 

  • Ostfeld RS, Glass GE, Keesing F (2005) Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20:328–336

    Article  PubMed  Google Scholar 

  • Oyer AM, Mathews NE, Skuldt LH (2006) Long-distance movement of a white-tailed deer away from a chronic wasting disease area. J Wildl Manage 71:1635–1638

    Article  Google Scholar 

  • Pavlovsky EN (1966) Natural nidality of transmissible diseases: with special reference to the landscape epidemiology of zooanthroponoses. University of Illinois Press, Champaign

    Google Scholar 

  • Perez-Espona S, Perez-Barberia FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reche FJ, Neri FM, Taraskin SN, Gilligan CA (2012) Prediction of invasion from the early stage of an epidemic. J R Soc Interface 9:2085–2096

    Article  PubMed  Google Scholar 

  • Ramsey DSL, Efford MG (2010) Management of bovine tuberculosis in brushtail possums in New Zealand: predictions from a spatially explicit, individual based model. J Appl Ecol 47:911–919

    Article  Google Scholar 

  • Real LA, Henderson JC, Biek R, Snaman J, Jack TL, Childs JE, Stahl E, Waller L, Tinline R, Nadin-Davis S (2005) Unifying the spatial population dynamics and molecular evolution of epidemic rabies virus. Proc Natl Acad Sci USA 102:12107–12111

    Article  PubMed  CAS  Google Scholar 

  • Riley S (2007) Large-scale spatial-transmission models of infectious disease. Science 316:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Robinson SJ, Samuel MD, Lopez DL, Shelton P (2012) The walk is never random: subtle landscape effects shape gene flow in a continuous white-tailed deer population in the Midwestern United States. Mol Ecol 21:4190–4205

    Google Scholar 

  • Rogers DJ, Randolph SE (2000) The global spread of malaria in a future, warmer world. Science 289:1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Rogers KG, Robinson SJ, Samuel MD, Grear DA (2011) Diversity and distribution of white-tailed deer mtDNA lineages in CWD outbreak areas in southern Wisconsin, USA. J Toxicol Environ Health 74:1521–1535

    Article  CAS  Google Scholar 

  • Rolley RE (2007) White-tailed deer population status. Wisconsin Department of Natural Resources, Madison

    Google Scholar 

  • Russell CA, Smith DL, Waller LA, Childs JE, Real LA (2004) A priori prediction of disease invasion dynamics in a novel environment. Proc R Soc Lond Ser B Biol Sci 271:21–25

    Article  Google Scholar 

  • Schramm P, Johnson C, Mathews N, McKenzie D, Aiken J, Pedersen J (2006) Potential role of soil in the transmission of prion disease. Rev Mineral Geochem 64:135–152

    Article  CAS  Google Scholar 

  • Shaw D, Grenfell B, Dobson A (1998) Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117:597–610

    Article  PubMed  Google Scholar 

  • Smith D, Lucey B, Waller L, Childs J, Real L (2002) Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci USA 99:3668–3672

    Article  PubMed  CAS  Google Scholar 

  • Smith D, Waller L, Russell C, Childs J, Real L (2005) Assessing the role of long-distance translocation and spatial heterogeneity in the raccoon rabies epidemic in Connecticut. Prev Vet Med 71:225–240

    Article  PubMed  CAS  Google Scholar 

  • Storm D (2011) Chronic wasting disease in white-tailed deer: evaluation of aerial surveys; age-estimation; and the role of deer density and landscape in disease transmission, pp. 87. Ph.D. Dissertation, University of Wisconsin, Madison, WI, USA

  • Storm DJ, Samuel MD, Rolley RE, Shelton P, Keuler NS, Richards BJ, Van Deelen TR (2013) Deer density and disease prevalence influence transmission of chronic wasting disease in white-tailed deer. Ecosphere 4:10

    Article  Google Scholar 

  • Vaske JJ, Timmons NR, Beaman J, Petchenick J (2004) Chronic wasting disease in Wisconsin: hunter behavior, perceived risk, and agency trust. Hum Dimens Wildl 9:193–209

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) R Package ‘MASS’: Modern Applied Statistics with S, 4th Edition. Springer, New York. http://cran.r-project.org/web/packages/MASS/index.html

  • Ver Hoef JM, Boveng PL (2007) Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88:2766–2772

    Article  PubMed  Google Scholar 

  • Walter WD, Walsh DP, Farnsworth ML, Winkelman DL, Miller MW (2011) Soil clay content underlies prion infection odds. Nat Commun 2:200

    Article  Google Scholar 

  • Williams ES (2005) Chronic wasting disease. Vet Pathol 42:530–549

    Article  PubMed  CAS  Google Scholar 

  • Wisconsin Dept. Natural Resources (2002) Wisconsin regulations related to chronic wasting disease. Madison

  • Wisconsin Dept. Natural Resources (2007) Deer abundance and densities in Wisconsin deer management units. vol 2008. Madison, WI, USA http://dnr.wi.gov/org/land/wildlife/HUNT/DEER/maps.htm

  • Wisconsin Dept. Natural Resources (2010) Wisconsin’s chronic wasting disease response plan: 2010–2025. Madison

Download references

Acknowledgments

We thank Wisconsin Department of Natural Resources and Illinois Department of Natural Resources for their collaboration obtaining data. Funding was provided by the U.S. Geological Survey, a U.S. Department of Agriculture Hatch grant, and the Wisconsin Department of Natural Resources. Thanks to the University of Wisconsin Department of Forest and Wildlife Ecology for assistance with publication costs. Note that any use of trade, product or firm names is for descriptive purposes, and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacie J. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, S.J., Samuel, M.D., Rolley, R.E. et al. Using landscape epidemiological models to understand the distribution of chronic wasting disease in the Midwestern USA. Landscape Ecol 28, 1923–1935 (2013). https://doi.org/10.1007/s10980-013-9919-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-013-9919-4

Keywords

Navigation