Landscape Ecology

, Volume 26, Issue 4, pp 529–540 | Cite as

Dispersal traits determine plant response to habitat connectivity in an urban landscape

  • Andrea Schleicher
  • Robert Biedermann
  • Michael Kleyer
Research Article


Identification of trait syndromes that make species vulnerable to habitat fragmentation is essential in predicting biodiversity change. Plants are considered particularly vulnerable if their capacities for persistence in and for dispersal among local habitats are low. Here we investigated the influence of easily measured functional traits on the presence of 45 plant species in an urban landscape in north-west Germany where patches were separated by distances consistent with regular plant dispersal range. To describe the spatial configuration of patches we calculated species-specific patch connectivities. Then we assessed plant connectivity responses in distribution models calculated from connectivities and environmental predictors. Twenty (45%) of the analysed species showed a positive connectivity response after accounting for species-specific habitat requirements. These species differed from non-responsive species by functional traits associated with dispersal, including reduced seed numbers and higher terminal velocities relative to non-responsive species. Persistence traits played however no role which we attribute to the environmental conditions of urban habitats and their spatiotemporal characteristics. Our study underlines that even ruderal plants experience dispersal limitation and demonstrates that easily measured functional traits may be used as indicators of fragmentation vulnerability in urban systems allowing generalizations to larger species sets.


Assembly rules Dispersal limitation Habitat fragmentation Local persistence Model averaging Plant functional traits Spatial autocorrelation 



This study was conducted as part of the collaborative research project ASSEMBLE within the ESF-Eurodiversity Programme (05_EDIV_FP040-ASSEMBLE) and was supported by the German Science Foundation (KL 756/2-1) and the European Science Foundation. We thank H.J. Poethke and N. Mason for useful comments on the manuscript, K. Thompson who did the seed terminal velocity measurements as part of the LEDA project and U. Schadek for providing plant trait data and the many students having assisted in collecting field data.

Supplementary material

10980_2011_9579_MOESM1_ESM.pdf (115 kb)
Supplementary material 1 (PDF 115 kb)


  1. Askew AP, Corker D, Hodkinson DJ, Thompson K (1997) A new apparatus to measure the rate of fall of seeds. Funct Ecol 11:121–125CrossRefGoogle Scholar
  2. Bastin L, Thomas CD (1999) The distribution of plant species in urban vegetation fragments. Landscape Ecol 14:493–507CrossRefGoogle Scholar
  3. Bekker RM, Bakker JP, Grandin U, Kalamees R, Milberg P, Poschlod P, Thompson K, Willems JH (1998) Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Funct Ecol 12:834–842CrossRefGoogle Scholar
  4. Bossuyt B, Honnay O (2006) Interactions between plant life span, seed dispersal capacity and fecundity determine metapopulation viability in a dynamic landscape. Landscape Ecol 21:1195–1205CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  6. Butaye J, Jacquemyn H, Hermy M (2001) Differential colonization causing non-random forest plant community structure in a fragmented agricultural landscape. Ecography 24:369–380CrossRefGoogle Scholar
  7. Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87:1217–1227PubMedCrossRefGoogle Scholar
  8. Campbell BD, Grime JP (1992) An experimental test of plant strategy theory. Ecology 73:15–29CrossRefGoogle Scholar
  9. Crowley PH, McLetchie DN (2002) Trade-offs and spatial life-history strategies in classical metapopulations. Am Nat 159:190–208PubMedCrossRefGoogle Scholar
  10. Deutscher Wetterdienst 2006/2007. Mittelwerte des Niederschlags und der Temperatur für den Zeitraum 1961–1990Google Scholar
  11. Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304Google Scholar
  12. Dirnböck T, Dullinger S (2004) Habitat distribution models, spatial autocorrelation, functional traits and dispersal capacity of alpine plant species. J Veg Sci 15:77–84CrossRefGoogle Scholar
  13. Dormann C, McPherson J, Araújo M, Bivand R, Boilliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling W, Kühn I, Ohlemüller R, Peres-Neto P, Reineking B, Schröder B, Schurr F, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  14. Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493CrossRefGoogle Scholar
  15. Dupré C, Ehrlén J (2002) Habitat configuration, species traits and plant distributions. J Ecol 90:796–805CrossRefGoogle Scholar
  16. Ehrlén J, Münzbergová Z, Diekmann M, Eriksson O (2006) Long-term assessment of seed limitation in plants: results from an 11-year experiment. J Ecol 94:1224–1232CrossRefGoogle Scholar
  17. Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Ulmer, StuttgartGoogle Scholar
  18. ESRI Inc. (2006) ArcMapTM version 9.2. Redlands, CaliforniaGoogle Scholar
  19. Ewers R, Didham R (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142PubMedCrossRefGoogle Scholar
  20. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  21. Fenner M, Thompson K (2004) The ecology of seeds. Cambridge University Press, CambridgeGoogle Scholar
  22. Foster BL (2001) Constraints on colonization and species richness along a grassland productivity gradient: the role of propagule availability. Ecol Lett 4:530–535CrossRefGoogle Scholar
  23. Freckleton RP, Watkinson AR (2001) Nonmanipulative determination of plant community dynamics. Trends Ecol Evol 16:301–307PubMedCrossRefGoogle Scholar
  24. Freckleton RP, Watkinson AR (2002) Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J Ecol 90:419–434CrossRefGoogle Scholar
  25. Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. PNAS 101:7651–7656PubMedCrossRefGoogle Scholar
  26. Girdler EB, Barrie BTC (2008) The scale-dependent importance of habitat factors and dispersal limitation in structuring Great Lakes shoreline plant communities. Plant Ecol 198:211–223CrossRefGoogle Scholar
  27. Goldberg DE, Barton AM (1992) Patterns and consequences of interspecific competition in natural communities—a review of field experiments with plants. Am Nat 139:771–801CrossRefGoogle Scholar
  28. Grashof-Bokdam CJ, Geertsema W (1998) The effect of isolation and history on colonization patterns of plant species in secondary woodland. J Biogeogr 25:837–846CrossRefGoogle Scholar
  29. Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613PubMedCrossRefGoogle Scholar
  30. Grime JP, Hodgson JG, Hunt R (1989) Comparative plant ecology: a functional approach to common British species. Unwin Hyman, LondonGoogle Scholar
  31. Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162CrossRefGoogle Scholar
  32. Helm A, Hanski I, Pärtel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77PubMedGoogle Scholar
  33. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251CrossRefGoogle Scholar
  34. Hérault B, Honnay O (2005) The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. J Biogeogr 32:2069–2081CrossRefGoogle Scholar
  35. Higgins SI, Nathan R, Cain ML (2003) Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal? Ecology 84:1945–1956CrossRefGoogle Scholar
  36. Jäger EJ, Werner K (2002) Rothmaler Exkursionsflora von Deutschland. Gefäßpflanzen: Kritischer Band. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  37. Johst K, Brandl R, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98:263–270CrossRefGoogle Scholar
  38. Kattwinkel M, Strauss B, Biedermann R, Kleyer M (2009) Modelling multi-species response to landscape dynamics: mosaic cycles support urban biodiversity. Landscape Ecol 24:929–941CrossRefGoogle Scholar
  39. Kleyer M, Bekker RM, Knevel IC, Bakker JP, Thompson K, Sonnenschein M, Poschlod P, van Groenendael JM, Klimeš L, Klimešová J, Klotz S, Rusch GM, Hermy M, Adriaens D, Boedeltje G, Bossuyt B, Endels P, Götzenberger L, Hodgson JG, Jackel A-K, Dannemann A, Kühn I, Kunzmann D, Ozinga WA, Römermann C, Stadler M, Schlegelmilch J, Steendam HJ, Tackenberg O, Wilmann B, Cornelissen JHC, Eriksson O, Garnier E, Fitter A, Peco B (2008) The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J Ecol 96:1266–1274CrossRefGoogle Scholar
  40. Kolb A, Diekmann M (2005) Effects on life-history traits on responses of plant species to forest fragmentation. Conserv Biol 19:929–938CrossRefGoogle Scholar
  41. Krauss J, Klein AM, Steffan-Dewenter I, Tscharntke T (2004) Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers Conserv 13:1427–1439CrossRefGoogle Scholar
  42. Legendre P, Legendre L (2006) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  43. Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145CrossRefGoogle Scholar
  44. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788PubMedCrossRefGoogle Scholar
  45. Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002) Mechanisms of long-distance dispersal of seeds by wind. Nature 418:409–413PubMedCrossRefGoogle Scholar
  46. Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23:638–647PubMedCrossRefGoogle Scholar
  47. Ozinga WA, Bekker RM, Schminée JHJ, van Groenendael JM (2004) Dispersal potential in plant communities depends on environmental conditions. J Ecol 92:767–777CrossRefGoogle Scholar
  48. Ozinga WA, Römermann C, Bekker RM, Prinzing A, Tamis WLM, Schaminée JHJ, Hennekens SM, Thompson K, Poschlod P, Kleyer M, Bakker JP, van Groenendael JM (2009) Dispersal failure contributes to plant losses in NW Europe. Ecol Lett 12:66–74PubMedCrossRefGoogle Scholar
  49. Piessens K, Honnay O, Hermy M (2005) The role of fragment area and isolation in the conservation of heathland species. Biol Conserv 122:61–69CrossRefGoogle Scholar
  50. Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. PNAS 105:20770–20775PubMedCrossRefGoogle Scholar
  51. Schadek U (2006) Plants in urban brownfields: modelling the driving factors of site conditions and of plant functional group occurrence in a dynamic environment. Dissertation, University of OldenburgGoogle Scholar
  52. Schadek U, Strauss B, Biedermann R, Kleyer M (2009) Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age. Urban Ecosyst Online First 115–126Google Scholar
  53. Schaffers AP, Sykora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci 11:225–244CrossRefGoogle Scholar
  54. Schippers P, van Groenendael JM, Vleeshouwers LM, Hunt R (2001) Herbaceous plant strategies in disturbed habitats. Oikos 95:198–210CrossRefGoogle Scholar
  55. Soons MB, Nathan R, Katul GG (2004) Human effects on long-distance wind dispersal and colonization by grassland plants. Ecology 85:3069–3079CrossRefGoogle Scholar
  56. Soons MB, Messlink JH, Jongejans E, Heil GW (2005) Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbs. J Ecol 93:1214–1225CrossRefGoogle Scholar
  57. SPSS Inc. (2006) SPSS version 15.0.1 for Windows. Chicago, USAGoogle Scholar
  58. Steyerberg EW, Harrell FE, Borsboom GJJM, Eijkemans MJC, Vergouwe Y, Habbema JDF (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781PubMedCrossRefGoogle Scholar
  59. Strauss B, Biedermann R (2006) Urban brownfields as temporary habitats: driving forces for the diversity of phytophagous insects. Ecography 29:928–940CrossRefGoogle Scholar
  60. Suding KN, Goldberg DE, Hartman KM (2003) Relationships among species traits: separating levels of response and identifying linkages to abundance. Ecology 84:1–16CrossRefGoogle Scholar
  61. Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205CrossRefGoogle Scholar
  62. Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66CrossRefGoogle Scholar
  63. Tremlová K, Münzbergová Z (2007) Importance of species traits for species distribution in fragmented landscapes. Ecology 88:965–977PubMedCrossRefGoogle Scholar
  64. Verheyen K, Vellend M, van Calster H, Peterken G, Hermy M (2004) Metapopulation dynamics in changing landscapes: a new spatially realistic model for forest plants. Ecology 85:3302–3312CrossRefGoogle Scholar
  65. Vos CC, Verboom J, Opdam PFM, ter Braak CJF (2001) Toward ecologically scaled landscape indices. Am Nat 157:24–41PubMedCrossRefGoogle Scholar
  66. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andrea Schleicher
    • 1
    • 2
  • Robert Biedermann
    • 1
  • Michael Kleyer
    • 1
  1. 1.Landscape Ecology Group, Institute of Biology and Environmental SciencesUniversity of OldenburgOldenburgGermany
  2. 2.ANUVA Landscape PlanningNürnbergGermany

Personalised recommendations