Skip to main content

Advertisement

Log in

Landscape regularity modelling for environmental challenges in agriculture

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

In agricultural landscapes, methods to identify and describe meaningful landscape patterns play an important role to understand the interaction between landscape organization and ecological processes. We propose an innovative stochastic modelling method of agricultural landscape organization where the temporal regularities in land-use are first identified through recognized Land-Use Successions before locating these successions in landscapes. These time–space regularities within landscapes are extracted using a new data mining method based on Hidden Markov Models. We applied this methodological proposal to the Niort Plain (West of France). We built a temporo-spatial analysis for this case study through spatially explicit analysis of Land-Use Succession dynamics. Implications and perspectives of such an approach, which links together the temporal and the spatial dimensions of the agricultural organization, are discussed by assessing the relationship between the agricultural landscape patterns defined using this approach and ecological data through an illustrative example of bird nests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Centre National de la Recherche Scientifique.

  2. Centre National de la Recherche Scientifique, Centre d’Etudes Biologiques de Chizé.

  3. http://www.loria.fr/~jfmari/App/

References

  • Benmiloud B, Pieczynski W (1995) Estimation des paramètres dans les chaînes de Markov cachés et segmentation d’images. Traitement du signal 12:433–454

    Google Scholar 

  • Benoît M, Papy F (1997) Pratiques Agricoles et qualité de l’eau sur le territoire alimentant un captage. In: Neveu A, Riou C, Bonhomme R et al (eds) L’eau dans l’espace rural (Production végétale et qualité de l’eau). Aupelf-Uref-UREF & Inra éditions, Paris, pp 323–338

    Google Scholar 

  • Benoît M, Mignolet C, Herrmann S et al (2007) Landscape as designed by farming systems: a challenge for landscape agronomists in Europe. In: Farming systems design 2007, methodologies for integrated analysis of farm production systems, Catania, 10–12 Sept 2007

  • Le Ber F, Benoît M (1998) Modelling the spatial organisation of land use in a farming territory. Example of a village in the Plateau lorrain. Agronomie 18:103–115

    Article  Google Scholar 

  • Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315:381–384

    Article  CAS  PubMed  Google Scholar 

  • Castellazzi M, Wood G, Burgess P et al (2008) A systematic representation of crop rotations. Agric Syst 97:26–33

    Article  Google Scholar 

  • De Koning GHJ, Verburg PH, Veldkamp A et al (1999) Multi-scale modelling of land use change dynamics in Ecuador. Agric Syst 61:77–93

    Article  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc Roy Soc Lond 268:25–29

    Article  Google Scholar 

  • Farina A, Belgrano A (2006) The eco-field hypothesis: toward a cognitive landscape. Landscape Ecol 21:5–17

    Article  Google Scholar 

  • Fine S, Singer Y, Tishby N (1998) The hierarchical hidden markov model: analysis and applications. Mach Learn 32:41–62

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Fuller RM, Devereux BJ, Gillings S, Amable GS, Hill RA (2005) Indices of bird-habitat preference from field surveys of birds and remote sensing of land cover: a study of south-eastern England with wider implications for conservation and biodiversity assessment. Glob Ecol Biogeogr 14:223–240

    Article  Google Scholar 

  • Girard CM, Benoît M, De Vaubernier E et al (1990) SPOT HRV data to discriminate grassland quality. Int J Remote Sens 11:2253–2267

    Article  Google Scholar 

  • Glenn-Lewin DC, van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Peet RK, Glenn-Lewin DC, Veblen TT (eds) Plant succession: theory and prediction. Chapman & Hall, London, pp 11–44

    Google Scholar 

  • Hughey R, Krogh A (1996) Hidden markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci 12:95–107

    CAS  PubMed  Google Scholar 

  • Jelinek F (1976) Continuous speech recognition by statistical methods. Proc IEEE 64:532–556

    Article  Google Scholar 

  • Landais E (1996) Typologies d’exploitations agricoles. Nouvelles questions, nouvelles méthodes. Economie Rurale (SFER) 236:3–15

    Article  Google Scholar 

  • Le Ber F, Benoît M, Schott C et al (2006) Studying crop sequences with CarrotAge, a HMM-based data mining software. Ecol Model 191:170–185

    Article  Google Scholar 

  • Leisz SJ, Thu Ha N, Bich Yen N et al (2005) Developing a methodology for identifying, mapping and potentially monitoring the distribution of general farming system types in Vietnam’s northern mountain region. Agric Syst 85:340–363

    Article  Google Scholar 

  • Mari J-F, Le Ber F (2006) Temporal and spatial data mining with second-order hidden markov models. Soft Comput 10:406–414

    Article  Google Scholar 

  • Mari J-F, Haton J-P, Kriouile A (1997) Automatic word recognition based on second-order hidden markov models. IEEE Trans speech Audio Process 5:22–25

    Article  Google Scholar 

  • Mignolet C, Benoît M (2001) Réflexions sur une segmentation régionale selon la diversité des systèmes techniques agricoles—Cas de la plaine des Vosges. Géomatique 11:177–190

    Google Scholar 

  • Mignolet C, Schott C, Benoît M (2007) Spatial dynamics of farming practices in the Seine basin: methods for agronomic approaches on a regional scale. Sci Total Environ 375:13–32

    Article  CAS  PubMed  Google Scholar 

  • Moonen A-C, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127:7–21

    Article  Google Scholar 

  • Morlon P, Benoît M (1990) Étude méthodologique d’un parcellaire d’exploitation agricole en tant que système. Agronomie 6:499–508

    Article  Google Scholar 

  • Peet RK, Glenn-Lewin DC, Veblen TT (1992) Plant succession: theory and prediction. Chapman & Hall, London

    Google Scholar 

  • Perrot C (1990) Typologie d’exploitations construite par agrégation autour de pôles définis à dire d’experts. Proposition méthodologique et premiers résultats obtenus en Haute-Marne. Prod Anim 3:51–66

    Google Scholar 

  • Poudevigne I, Alard D (1997) Landscape and agricultural patterns in rural areas: a case study in the Brionne Basin, Normandy, France. J Environ Manag 50:335–349

    Article  Google Scholar 

  • Reboul C (1976) Mode de production et systèmes de culture et d’élevage. Economie Rurale 112:55–65

    Article  Google Scholar 

  • Retho B, Gaucherel C, Inchausti P et al (2008) Spatially explicit population dynamics of Pterostichus Melanarius I11. (Coleoptera: Carabidae) in response to changes in the composition and configuration of agricultural landscapes. Landsc Urban Plan 84:191–199

    Article  Google Scholar 

  • Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176

    Article  Google Scholar 

  • Salamolard M (1997) Utilisation de l’espace par le Busard cendré Circus pygargus. Superficie et distribution des zones de chasse. Alauda 65:307–320

    Google Scholar 

  • Sebillotte M (1974) Agronomie et agriculture. Essai d’analyse des tâches de l’agronome. Cahiers de l’ORSTOM 24:3–25

    Google Scholar 

  • Turner MG (1990) Spatial and temporal analysis of landscape pattern. Landscape Ecol 4:21–30

    Article  Google Scholar 

  • Turner MG (2005) Landscape ecology: what is the state of the science? Annu Rev Ecol Evol Syst 36:319–344

    Article  Google Scholar 

  • Usher MB (1992) Statistical models of succession. In: Peet RK, Glenn-Lewin DC, Veblen TT (eds) Plant succession: theory and prediction. Chapman & Hall, London, pp 215–246

    Google Scholar 

  • Veldkamp A, Fresco LO (1997) Reconstructing land use drivers and their spatial scale dependence for Costa Rica (1973 and 1984). Agric Syst 55:19–43

    Article  Google Scholar 

  • Veldkamp A, Lambin E (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6

    Article  Google Scholar 

  • Verburg PH, Veldkamp A (2001) The role of spatially explicit models in land-use change research: a case study for cropping patterns in China. Agric Ecosyst Environ 85:177–190

    Article  Google Scholar 

  • Welch LR (2003) Hidden markov models and the Baum-welch algorithm. IEEE Inform Theory Soc Newsl 53:10–13

    Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR-ADD-COPT project, the API-ECOGER project and the ANR-BiodivAgrim project. We thank the CNRS team in Chizé for their data records obtained from their “Niort Plain data base”. We thank Anne Mimet and the anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El Ghali Lazrak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazrak, E.G., Mari, JF. & Benoît, M. Landscape regularity modelling for environmental challenges in agriculture. Landscape Ecol 25, 169–183 (2010). https://doi.org/10.1007/s10980-009-9399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-009-9399-8

Keywords

Navigation