Advertisement

Landscape Ecology

, Volume 25, Issue 2, pp 169–183 | Cite as

Landscape regularity modelling for environmental challenges in agriculture

  • El Ghali Lazrak
  • Jean-François Mari
  • Marc Benoît
Research Article

Abstract

In agricultural landscapes, methods to identify and describe meaningful landscape patterns play an important role to understand the interaction between landscape organization and ecological processes. We propose an innovative stochastic modelling method of agricultural landscape organization where the temporal regularities in land-use are first identified through recognized Land-Use Successions before locating these successions in landscapes. These time–space regularities within landscapes are extracted using a new data mining method based on Hidden Markov Models. We applied this methodological proposal to the Niort Plain (West of France). We built a temporo-spatial analysis for this case study through spatially explicit analysis of Land-Use Succession dynamics. Implications and perspectives of such an approach, which links together the temporal and the spatial dimensions of the agricultural organization, are discussed by assessing the relationship between the agricultural landscape patterns defined using this approach and ecological data through an illustrative example of bird nests.

Keywords

Cropping system Land-use changes Temporo-spatial analysis Data mining Hidden Markov Model (HMM) Hierarchical Hidden Markov Model (HHMM) Landscape agronomy Agricultural patterns Landscape ecology Poitou-Charentes (France) 

Notes

Acknowledgments

This work was supported by the ANR-ADD-COPT project, the API-ECOGER project and the ANR-BiodivAgrim project. We thank the CNRS team in Chizé for their data records obtained from their “Niort Plain data base”. We thank Anne Mimet and the anonymous reviewers for their useful comments.

References

  1. Benmiloud B, Pieczynski W (1995) Estimation des paramètres dans les chaînes de Markov cachés et segmentation d’images. Traitement du signal 12:433–454Google Scholar
  2. Benoît M, Papy F (1997) Pratiques Agricoles et qualité de l’eau sur le territoire alimentant un captage. In: Neveu A, Riou C, Bonhomme R et al (eds) L’eau dans l’espace rural (Production végétale et qualité de l’eau). Aupelf-Uref-UREF & Inra éditions, Paris, pp 323–338Google Scholar
  3. Benoît M, Mignolet C, Herrmann S et al (2007) Landscape as designed by farming systems: a challenge for landscape agronomists in Europe. In: Farming systems design 2007, methodologies for integrated analysis of farm production systems, Catania, 10–12 Sept 2007Google Scholar
  4. Le Ber F, Benoît M (1998) Modelling the spatial organisation of land use in a farming territory. Example of a village in the Plateau lorrain. Agronomie 18:103–115CrossRefGoogle Scholar
  5. Butler SJ, Vickery JA, Norris K (2007) Farmland biodiversity and the footprint of agriculture. Science 315:381–384CrossRefPubMedGoogle Scholar
  6. Castellazzi M, Wood G, Burgess P et al (2008) A systematic representation of crop rotations. Agric Syst 97:26–33CrossRefGoogle Scholar
  7. De Koning GHJ, Verburg PH, Veldkamp A et al (1999) Multi-scale modelling of land use change dynamics in Ecuador. Agric Syst 61:77–93CrossRefGoogle Scholar
  8. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc Roy Soc Lond 268:25–29CrossRefGoogle Scholar
  9. Farina A, Belgrano A (2006) The eco-field hypothesis: toward a cognitive landscape. Landscape Ecol 21:5–17CrossRefGoogle Scholar
  10. Fine S, Singer Y, Tishby N (1998) The hierarchical hidden markov model: analysis and applications. Mach Learn 32:41–62CrossRefGoogle Scholar
  11. Forman RTT, Godron M (1986) Landscape ecology. Wiley, New YorkGoogle Scholar
  12. Fuller RM, Devereux BJ, Gillings S, Amable GS, Hill RA (2005) Indices of bird-habitat preference from field surveys of birds and remote sensing of land cover: a study of south-eastern England with wider implications for conservation and biodiversity assessment. Glob Ecol Biogeogr 14:223–240CrossRefGoogle Scholar
  13. Girard CM, Benoît M, De Vaubernier E et al (1990) SPOT HRV data to discriminate grassland quality. Int J Remote Sens 11:2253–2267CrossRefGoogle Scholar
  14. Glenn-Lewin DC, van der Maarel E (1992) Patterns and processes of vegetation dynamics. In: Peet RK, Glenn-Lewin DC, Veblen TT (eds) Plant succession: theory and prediction. Chapman & Hall, London, pp 11–44Google Scholar
  15. Hughey R, Krogh A (1996) Hidden markov models for sequence analysis: extension and analysis of the basic method. Comput Appl Biosci 12:95–107PubMedGoogle Scholar
  16. Jelinek F (1976) Continuous speech recognition by statistical methods. Proc IEEE 64:532–556CrossRefGoogle Scholar
  17. Landais E (1996) Typologies d’exploitations agricoles. Nouvelles questions, nouvelles méthodes. Economie Rurale (SFER) 236:3–15CrossRefGoogle Scholar
  18. Le Ber F, Benoît M, Schott C et al (2006) Studying crop sequences with CarrotAge, a HMM-based data mining software. Ecol Model 191:170–185CrossRefGoogle Scholar
  19. Leisz SJ, Thu Ha N, Bich Yen N et al (2005) Developing a methodology for identifying, mapping and potentially monitoring the distribution of general farming system types in Vietnam’s northern mountain region. Agric Syst 85:340–363CrossRefGoogle Scholar
  20. Mari J-F, Le Ber F (2006) Temporal and spatial data mining with second-order hidden markov models. Soft Comput 10:406–414CrossRefGoogle Scholar
  21. Mari J-F, Haton J-P, Kriouile A (1997) Automatic word recognition based on second-order hidden markov models. IEEE Trans speech Audio Process 5:22–25CrossRefGoogle Scholar
  22. Mignolet C, Benoît M (2001) Réflexions sur une segmentation régionale selon la diversité des systèmes techniques agricoles—Cas de la plaine des Vosges. Géomatique 11:177–190Google Scholar
  23. Mignolet C, Schott C, Benoît M (2007) Spatial dynamics of farming practices in the Seine basin: methods for agronomic approaches on a regional scale. Sci Total Environ 375:13–32CrossRefPubMedGoogle Scholar
  24. Moonen A-C, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127:7–21CrossRefGoogle Scholar
  25. Morlon P, Benoît M (1990) Étude méthodologique d’un parcellaire d’exploitation agricole en tant que système. Agronomie 6:499–508CrossRefGoogle Scholar
  26. Peet RK, Glenn-Lewin DC, Veblen TT (1992) Plant succession: theory and prediction. Chapman & Hall, LondonGoogle Scholar
  27. Perrot C (1990) Typologie d’exploitations construite par agrégation autour de pôles définis à dire d’experts. Proposition méthodologique et premiers résultats obtenus en Haute-Marne. Prod Anim 3:51–66Google Scholar
  28. Poudevigne I, Alard D (1997) Landscape and agricultural patterns in rural areas: a case study in the Brionne Basin, Normandy, France. J Environ Manag 50:335–349CrossRefGoogle Scholar
  29. Reboul C (1976) Mode de production et systèmes de culture et d’élevage. Economie Rurale 112:55–65CrossRefGoogle Scholar
  30. Retho B, Gaucherel C, Inchausti P et al (2008) Spatially explicit population dynamics of Pterostichus Melanarius I11. (Coleoptera: Carabidae) in response to changes in the composition and configuration of agricultural landscapes. Landsc Urban Plan 84:191–199CrossRefGoogle Scholar
  31. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176CrossRefGoogle Scholar
  32. Salamolard M (1997) Utilisation de l’espace par le Busard cendré Circus pygargus. Superficie et distribution des zones de chasse. Alauda 65:307–320Google Scholar
  33. Sebillotte M (1974) Agronomie et agriculture. Essai d’analyse des tâches de l’agronome. Cahiers de l’ORSTOM 24:3–25Google Scholar
  34. Turner MG (1990) Spatial and temporal analysis of landscape pattern. Landscape Ecol 4:21–30CrossRefGoogle Scholar
  35. Turner MG (2005) Landscape ecology: what is the state of the science? Annu Rev Ecol Evol Syst 36:319–344CrossRefGoogle Scholar
  36. Usher MB (1992) Statistical models of succession. In: Peet RK, Glenn-Lewin DC, Veblen TT (eds) Plant succession: theory and prediction. Chapman & Hall, London, pp 215–246Google Scholar
  37. Veldkamp A, Fresco LO (1997) Reconstructing land use drivers and their spatial scale dependence for Costa Rica (1973 and 1984). Agric Syst 55:19–43CrossRefGoogle Scholar
  38. Veldkamp A, Lambin E (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6CrossRefGoogle Scholar
  39. Verburg PH, Veldkamp A (2001) The role of spatially explicit models in land-use change research: a case study for cropping patterns in China. Agric Ecosyst Environ 85:177–190CrossRefGoogle Scholar
  40. Welch LR (2003) Hidden markov models and the Baum-welch algorithm. IEEE Inform Theory Soc Newsl 53:10–13Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • El Ghali Lazrak
    • 1
  • Jean-François Mari
    • 2
  • Marc Benoît
    • 1
  1. 1.INRA, UR 055 SAD ASTERMirecourtFrance
  2. 2.UMR 7503 LORIAVandœuvre-lès-NancyFrance

Personalised recommendations