Skip to main content

Advertisement

Log in

Modeling grain-size dependent bias in estimating forest area: a regional application

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

A better understanding of scaling-up effects on estimating important landscape characteristics (e.g. forest percentage) is critical for improving ecological applications over large areas. This study illustrated effects of changing grain sizes on regional forest estimates in Minnesota, Wisconsin, and Michigan of the USA using 30-m land-cover maps (1992 and 2001) produced by the National Land Cover Datasets. The maps were aggregated to two broad cover types (forest vs. non-forest) and scaled up to 1-km and 10-km resolutions. Empirical models were established from county-level observations using regression analysis to estimate scaling effects on area estimation. Forest percentages observed at 30-m and 1-km land-cover maps were highly correlated. This intrinsic relationship was tested spatially, temporally, and was shown to be invariant. Our models provide a practical way to calibrate forest percentages observed from coarse-resolution land-cover data. The models predicted mean scaling effects of 7.0 and 12.0% (in absolute value with standard deviations of 2.2 and 5.3%) on regional forest cover estimation (ranging from 2.3 and 2.5% to 11.1 and 23.7% at the county level) with standard errors of model estimation 3.1 and 7.1% between 30 m and 1 km, and 30 m and 10 km, respectively, within a 95% confidence interval. Our models improved accuracy of forest cover estimates (in terms of percent) by 63% (at 1-km resolution) and 57% (at 10-km resolution) at the county level relative to those without model adjustment and by 87 and 84% at the regional level in 2001. The model improved 1992 and 2001 regional forest estimation in terms of area for 1-km maps by 15,141 and 7,412 km2 (after area weighting of all counties) respectively, compared to the corresponding estimates without calibration using 30 m-based regional forest areas as reference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams JB, Smith MO, Johnston PE (1986) Spectral mixture modeling: a new analysis of rock and soil types at the viking lander 1 site. J Geophys Res 91:8098–8112. doi:10.1029/JB091iB08p08098

    Article  Google Scholar 

  • Ahl DE, Gower ST, Mackay DS et al (2005) The effects of aggregated land cover data on estimating NPP in northern Wisconsin. Remote Sens Environ 97:1–14. doi:10.1016/j.rse.2005.02.016

    Article  Google Scholar 

  • Ajtay GL, Ketner P, Duvigneaud P (1979) Terrestrial primary production and phytomass. In: Bolin EDB, Kempe S, Ketner P (eds) The global carbon cycle. Wiley, New York, pp 129–182

    Google Scholar 

  • Alexandridis T, Chemin Y (2002) Landsat ETM+, Terra MODIS and NOAA AVHRR: issues of scale and inter-dependency regarding land parameters. In: Proceedings of Asian Conference on Remote Sensing, 25–29 November, Kathmandu, Nepal

  • Bierkens MFP, Finke PA, Willigen PD (2000) Upscaling and downscaling methods for environmental research. Kluwer Academic Publisher, Dordrecht

    Google Scholar 

  • Bloschl G, Sivapalan M (1995) Scale issues in hydrological modeling: a review. Hydrol Process 9:251–290. doi:10.1002/hyp.3360090305

    Article  Google Scholar 

  • Bresee MK, LeMoine JM, Mather S et al (2004) Disturbance and landscape dynamics in the Chequamegon National Forest, Wisconsin, USA, from 1972 to 2001. Landsc Ecol 19:291–309. doi:10.1023/B:LAND.0000030419.27883.40

    Article  Google Scholar 

  • Brown PJ (1982) Multivariate calibration. J R Stat Soc [Ser A] B44:287–321

    Google Scholar 

  • Buyantuyev A, Wu J (2007) Effects of thematic resolution on landscape pattern analysis. Landsc Ecol 22:7–13. doi:10.1007/s10980-006-9010-5

    Article  Google Scholar 

  • Carleton TJ (2003) Old growth in the Great Lakes forest. Environ Rev 11:S115–S134. doi:10.1139/a03-009

    Article  Google Scholar 

  • Clark WAV, Hosking PL (1986) Statistical methods for geographers. John Wiley & Sons, New York, p 518

    Google Scholar 

  • Cohen WB, Justice CO (1999) Validating MODIS terrestrial ecology products: linking in situ and satellite measurements. Remote Sens Environ 70:1–3. doi:10.1016/S0034-4257(99)00053-X

    Article  Google Scholar 

  • Cohen WB, Maiersperger TK, Spies TA et al (2001) Modelling forest cover attributes as continuous variables in a regional context with Thematic Mapper data. Int J Remote Sens 2:2279–2310. doi:10.1080/014311601300229827

    Article  Google Scholar 

  • Czaplewski RL, Catts GP (1992) Calibration of remotely sensed proportion or area estimates for misclassification error. Remote Sens Environ 39:29–43. doi:10.1016/0034-4257(92)90138-A

    Article  Google Scholar 

  • Dungan JL, Perry JN, Dale MRT et al (2002) A balanced view of scale in spatial statistical analysis. Ecography 25:626–640. doi:10.1034/j.1600-0587.2002.250510.x

    Article  Google Scholar 

  • ESRI (nd) (2006) Retrieved December 19, from http://webhelpesricom/arcgisdesktop/92/indexcfm?TopicName=BlockMajority

  • Emanuel WR, Shugart HH, Stevenson MP (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim Change 7:29–43. doi:10.1007/BF00139439

    Article  Google Scholar 

  • Fang H, Liang S, Chen M et al (2004) Statistical comparison of MISR, ETM+ and MODIS land surface reflectance and albedo products of the BARC land validation core site, USA. Int J Remote Sens 25:409–422. doi:10.1080/0143116031000101666

    Article  Google Scholar 

  • Fassnacht KS, Gower ST, MacKenzie MD et al (1997) Estimating the leaf area index of North Central Wisconsin forests using the Landsat Thematic Mapper. Remote Sens Environ 61:229–245. doi:10.1016/S0034-4257(97)00005-9

    Article  Google Scholar 

  • Friedl MA, McIver DK, Hodges JCF et al (2002) Global land cover from MODIS: algorithms and early results. Remote Sens Environ 83:135–148. doi:10.1016/S0034-4257(02)00078-0

    Article  Google Scholar 

  • Gardner RH, Lookingbill TR, Townsend PA, Ferrari J (2008) A new approach for rescaling land cover data. Landsc Ecol 23:513–526. doi:10.1007/s10980-008-9213-z

    Article  Google Scholar 

  • Goetz SJ, Prince SD, Small J et al (2000) Interannual variability of global terrestrial primary production: results of a model driven with satellite observations. J Geog Res 105:20077–20091. doi:10.1029/2000JD900274

    Article  Google Scholar 

  • Goodchild MF, Quattrochi DA (1997) Scale, multiscaling, remote sensing, and GIS. In: Quattrochi DA, Goodchild MF (eds) Scale in remote sensing and GIS. Lewis Publisher, Boca Raton, pp 1–11

    Google Scholar 

  • Gower ST, Krankina ON, Olson RJ et al (2001) Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11:1395–1411. doi:10.1890/1051-0761(2001)011[1395:NPPACA]2.0.CO;2

    Article  Google Scholar 

  • Hall O, Hay G, Bouchard A, Marceau D (2004) Detecting dominant landscape objects through multiple scales: an integration of object-specific methods and watershed segmentation. Landsc Ecol 19:59–76. doi:10.1023/B:LAND.0000018371.43447.1f

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JR et al (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364. doi:10.1080/014311600210209

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JR et al (2003) Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS Vegetation Continuous Fields algorithm. Earth Interact 7:1–15. doi:10.1175/1087-3562(2003)007<0001:GPTCAA>2.0.CO;2

    Article  Google Scholar 

  • Heath LS, Birdsey RA, Row C (1996) Carbon pools and fluxes in US forest products. In: Apps MJ, Price DT, Price DT (eds) Forest ecosystems, forest management, and the global carbon cycle NATO ASI Series I: global environmental changes. Springer Verlag, NY, USA, pp 271–278

    Google Scholar 

  • Homer C, Huang C, Yang L et al (2004) Development of a 2001 national land-cover database for the United States. Photogramm Eng Remote Sens 70:829–840

    Google Scholar 

  • Huguenin RL, Karaska MA, Bralicom DV et al (1997) Subpixel classification of bald cypress and tupelo gum trees in thematic mapper imagery. Photogramm Eng Remote Sens 63:717–725

    Google Scholar 

  • Jelinski D, Wu J (1996) The modifiable areal unit problem and implications for landscape ecology. Landsc Ecol 11:129–140. doi:10.1007/BF02447512

    Article  Google Scholar 

  • Ju J, Gopal S, Kolaczyk ED (2005) On the choice of spatial and categorical scale in remote sensing land cover classification. Remote Sens Environ 96:62–77. doi:10.1016/j.rse.2005.01.016

    Article  Google Scholar 

  • Katz RW (2002) Techniques for estimating uncertainty in climate change scenarios and impact studies. Clim Res 20:167–185. doi:10.3354/cr020167

    Article  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1983. doi:10.2307/1941447

    Article  Google Scholar 

  • Li H, Reynolds F (1993) A new contagion index to quantify spatial patterns of landscapes. Landsc Ecol 8:155–162. doi:10.1007/BF00125347

    Article  Google Scholar 

  • Li H, Wu J (2006) Uncertainty analysis in ecological studies: an overview. In: Wu J, Jones KB, Li H, Loucks O (eds) Scaling and uncertainty analysis in ecology: methods and applications. Springer, Dordrect, Netherlands, pp 43–64

    Google Scholar 

  • Lieth H (1975) Modelling the primary productivity of the world. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer-Verlag, New York, pp 237–263

    Google Scholar 

  • Mayaux P, Lambin EF (1997) Tropical forest area measured from global land-cover classifications: inverse calibration models based on spatial textures. Remote Sens Environ 59:29–43. doi:10.1016/S0034-4257(96)00077-6

    Article  Google Scholar 

  • McWilliams WH, Heath LS, Reese GC et al (2000) Forest resources and conditions. In: Mickler RA, Birdsey RA, Hom J (eds) Responses of northern US forests to environmental change. Springer-Verlag, New York, pp 3–26

    Google Scholar 

  • Moody A, Woodcock CE (1994) Scale-dependent errors in the estimation of land-cover proportions: implications for global land-cover datasets. Photogramm Eng Remote Sens 60:585–596

    Google Scholar 

  • Moody A, Woodcock CE (1995) The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landsc Ecol 10:363–379. doi:10.1007/BF00130213

    Article  Google Scholar 

  • Moody A, Woodcock CE (1996) Calibration-based methods for correction of area estimates derived from coarse resolution land-cover data. Remote Sens Environ 58:225–241. doi:10.1016/S0034-4257(96)00036-3

    Article  Google Scholar 

  • MRLC (nd) (2007) Retrieved May 14, from http://wwwmrlcgov/

  • Oki K, Uenishi TM, Omasa K (2004) Accuracy of land cover area estimated from coarse spatial resolution images using unmixing method. Int J Remote Sens 25:1673–1683. doi:10.1080/0143116031000139854

    Article  Google Scholar 

  • O’Neill RV (1988) Hierarchy theory and global change. In: Rosswall T, Woodmansee RG, Risser PG (eds) Scales and global change. Wiley, Melbourne, Australia, pp 29–46

    Google Scholar 

  • Running SW, Baldocchi DD, Turner DP et al (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens Environ 70:108–127. doi:10.1016/S0034-4257(99)00061-9

    Article  Google Scholar 

  • Running SW, Thornton PE, Nemani R et al (2000) Global terrestrial gross and net primary productivity from the earth observing system. In: Sala OE, Jackson R, Mooney HA, Hwarth R (eds) Methods in ecosystem science. Springer-Verlag, New York, pp 44–57

    Google Scholar 

  • Saura S (2004) Effects of remote sensor spatial resolution and data aggregation on selected fragmentation indices. Landsc Ecol 19:197–209. doi:10.1023/B:LAND.0000021724.60785.65

    Article  Google Scholar 

  • Settle JJ, Drake NA (1993) Linear mixing and the estimation of ground cover proportions. Int J Remote Sens 14:1159–1177. doi:10.1080/01431169308904402

    Article  Google Scholar 

  • Smith JE, Heath LS (2007) US agriculture and forestry greenhouse gas inventory: 1990–2005. Tech Bull Wash DC (in press)

  • Smith JE, Heath LS, Skog KE (2006) Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States. Gen Tech Rep NE-343. USDA Forest Service, Northeastern Research Station, Newtown Square, PA, p 216

    Google Scholar 

  • Strahler AH, Woodcock CE, Smith JA (1986) On the nature of models in remote sensing. Remote Sens Environ 20:121–139. doi:10.1016/0034-4257(86)90018-0

    Article  Google Scholar 

  • Stuckens J, Coppin PR, Bauer ME (2000) Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens Environ 71:282–296. doi:10.1016/S0034-4257(99)00083-8

    Article  Google Scholar 

  • Townshend J, Justice CO, Li W et al (1991) Global landcover classification by remote sensing: present capabilities and future possibilities. Remote Sens Environ 35:243–255. doi:10.1016/0034-4257(91)90016-Y

    Article  Google Scholar 

  • Tucker CJ, Townshend JRG, Goff TE (1985) African land-cover classification using satellite data. Sci 227:369–375. doi:10.1126/science.227.4685.369

    Article  Google Scholar 

  • Turner MG (1989) Landscape Ecol: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197. doi:10.1146/annurev.es.20.110189.001131

    Article  Google Scholar 

  • Turner MG, Dale VH, Gardner RH (1989) Predicting across scales: theory development and testing. Landscape Ecol 3:245–252. doi:10.1007/BF00131542

    Article  Google Scholar 

  • Turner DP, Cohen WB, Kennedy RE (2000) Alternative spatial resolutions and estimates of carbon flux over a managed forest landscape in Western Oregon. Landsc Ecol 15:441–452. doi:10.1023/A:1008116300063

    Article  Google Scholar 

  • USDA (2007) Natural Resources Conservation Service. http://wwwnrcsusdagov/TECHNICAL/land/nri03/statereports/2003summaryreportpdf

  • Vogelmann JE, Howard SM, Yang L et al (2001) Completion of the 1990s National Land Cover Dataset for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources. Photogramm Eng Remote Sens 67:650–652

    Google Scholar 

  • Walsh TA, Burk TE (1993) Calibration of satellite classification of land area. Remote Sens Environ 46:281–290. doi:10.1016/0034-4257(93)90048-3

    Article  Google Scholar 

  • Woodcock CE, Strahler AH (1987) The factor of scale in remote sensing. Remote Sens Environ 21:311–332. doi:10.1016/0034-4257(87)90015-0

    Article  Google Scholar 

  • Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Rem Sens 25:367–380

    Google Scholar 

  • Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138. doi:10.1023/B:LAND.0000021711.40074.ae

    Article  Google Scholar 

  • Wu J, David JL (2002) Spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol Modell 153:7–26. doi:10.1016/S0304-3800(01)00499-9

    Article  Google Scholar 

  • Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17:355–365. doi:10.1023/A:1020561630963

    Article  Google Scholar 

  • Wu J, Li H (2006) Concepts of scale and scaling. In: Wu J, Jones B, Li H, Loucks OL (eds) Scaling and uncertainty analysis in ecology: methods and applications. Springer, Dordrecht, The Netherlands, pp 3–15

    Chapter  Google Scholar 

  • Wu J, Marceau DJ (2002) Modeling complex ecological systems: an introduction. Ecol Modell 153:1–6. doi:10.1016/S0304-3800(01)00498-7

    Article  Google Scholar 

  • Zheng D, Prince SD, Wright R (2003) Terrestrial net primary production estimates for 050 grid cells from field observations—a contribution to global biogeochemical modeling. Glob Change Biol 9:46–64. doi:10.1046/j.1365-2486.2003.00534.x

    Article  Google Scholar 

  • Zheng D, Prince SD, Hame T (2004a) Estimating net primary production of boreal forests in Finland and Sweden from field data and remote sensing. J Veg Sci 15:161–170. doi:10.1658/1100-9233(2004)015[0161:ENPPOB]2.0.CO;2

    Article  Google Scholar 

  • Zheng D, Rademacher J, Chen J et al (2004b) Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93:402–411. doi:10.1016/j.rse.2004.08.008

    Article  Google Scholar 

  • Zheng D, Heath LS, Ducey MJ (2007) Forest biomass estimated from MODIS and FIA data in the Lake States: MN, WI, and MI, USA. Forestry 80:265–278. doi:10.1093/forestry/cpm015

    Article  Google Scholar 

Download references

Acknowledgements

This study was in part funded by the USDA Forest Service through grant 05-DG-11242343-074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daolan Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, D., Heath, L.S. & Ducey, M.J. Modeling grain-size dependent bias in estimating forest area: a regional application. Landscape Ecol 23, 1119–1132 (2008). https://doi.org/10.1007/s10980-008-9272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-008-9272-1

Keywords

Navigation