Landscape Ecology

, Volume 23, Issue 9, pp 1049–1065 | Cite as

Wetland vegetation distribution modelling for the identification of constraining environmental variables

  • J. Peters
  • N. E. C. Verhoest
  • R. Samson
  • P. Boeckx
  • B. De Baets
Research Article


Wetland ecosystems are of primary concern for nature conservation and restoration. Adequate conservation and restoration strategies emerge from a scientific comprehension of wetland properties and processes. Hereby, the understanding of plant species and vegetation patterns in relation to environmental gradients is an important issue. The modelling approaches in this study statistically relate vegetation patterns to measured environmental gradients in a lowland wetland ecosystem. Measured environmental gradients included groundwater quantity and quality aspects, soil properties and vegetation management. Among this variety, the objective was to identify the key environmental gradients constraining the vegetation, using recently developed methodologies within the modelling approaches. Comparison of results indicated that different environmental gradients were considered to be important by different methodologies.


Vegetation Model Distribution Pattern Random forest Logistic regression Variable importance Hierarchical partitioning Wetland Groundwater 



Multiple logistic regression


Random forest



The authors wish to thank the special research fund (BOF, project nr 011/015/04) of Ghent University, and the Fund for Scientific Research-Flanders (operating and equipment grant We are grateful to Willy Huybrechts and Piet De Becker from the Institute of Nature Conservation, Belgium, for providing the data gathered through the Flemish Research Programme on Nature Development (projects VLINA 96/03 and VLINA 00/16), and to Rudi Hoeben for computer assistance.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  2. Araújo MB, News M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22(1):42–47PubMedCrossRefGoogle Scholar
  3. Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance measures. Comput Stat Data Anal 52:2249–2260CrossRefGoogle Scholar
  4. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. Ecol Model 157(2–3):101–118CrossRefGoogle Scholar
  5. Barendregt A, Wassen MJ, Smidt JTD (1993) Hydroecological modelling in a polder landscape: a tool for wetland management. In: Vos CC, Opdam P (eds) Landscape ecology of a stressed environment. Chapman and Hall, LondonGoogle Scholar
  6. Bio AMF, De Becker P, De Bie E, Huybrechts W, Wassen M (2002) Prediction of plant species distribution in lowland river valleys in Belgium: modelling species response to site conditions. Biodivers Conserv 11:2189–2216CrossRefGoogle Scholar
  7. Breiman L (2001) Random forests. Mach Learn 45:5–32CrossRefGoogle Scholar
  8. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Chapman and Hall, New YorkGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Chevan A, Sutherland M (1991) Hierarchical partitioning. Am Stat 45(2):90–96CrossRefGoogle Scholar
  11. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measure 20:37–46CrossRefGoogle Scholar
  12. De Becker P, Huybrechts W (2000) De Doode Bemde—Ecohydrologische Atlas. Institute of Nature Conservation, Brussels (in Dutch)Google Scholar
  13. De Becker P, Hermy M, Butaye J (1999) Ecohydrological characterisation of a groundwater-fed alluvial floodplane mire. Appl Veg Sci 2:215–228CrossRefGoogle Scholar
  14. Díaz-Uriarte R, de Andrés SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(3).  doi:10.1186/1471-2105-7-3
  15. Ertsen ACD, Frens JW, Nieuwenhuis JW, Wassen MJ (1995) An approach to modelling the relationship between plant species and site conditions in terrestrial ecosystems. Landsc Urban Plan 31:143–151CrossRefGoogle Scholar
  16. Everitt BS (1992) The analysis of contingency tables, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  17. Fleisman E, Mac Nally R, Murphy DD (2005) Relationships among non-native plants, diversity of plants and butterflies, and adequacy of spatial sampling. Biol J Linn Soc 85:157–166CrossRefGoogle Scholar
  18. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  19. Guisan A, Zimmerman NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186CrossRefGoogle Scholar
  20. Hansen L, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12:993–1001CrossRefGoogle Scholar
  21. Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall, LondonGoogle Scholar
  22. Hill MO (1979) TWINSPAN—a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, IthacaGoogle Scholar
  23. Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Wiley, ChichesterGoogle Scholar
  24. Huybrechts W, De Bie E, De Becker P, Wassen M, Bio A (2002) Ontwikkeling van een hydro-ecologisch model voor vallei-ecosystemen in Vlaanderen, ITORS-VL (VLINA 00/16). Instituut voor Natuurbehoud, Brussel (In Dutch)Google Scholar
  25. Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers, Boca RatonGoogle Scholar
  26. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, AmsterdamGoogle Scholar
  27. Liaw A, Wiener M (2002) Classification and regression by random forest. R News 2/3:18–22Google Scholar
  28. Londo G (1988) Nederlandse Freatophyten. Pudoc, Wageningen (in Dutch)Google Scholar
  29. Mac Nally R (2000) Regression and model-building in conservation biology, biogeography, and ecology: the distinction between—and reconciliation of—‘predictive’ and ‘explanatory’ models. Biodivers Conserv 9:655–671CrossRefGoogle Scholar
  30. Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv 11:1397–1401CrossRefGoogle Scholar
  31. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New YorkGoogle Scholar
  32. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W (1996) Applied linear statistical models, 4th edn. WCB McGraw-Hill, United StatesGoogle Scholar
  33. Noest V (1994) A hydrology-vegetation interaction model for predicting the occurrence of plant species in dune slacks. J Environ Manage 40:119–128CrossRefGoogle Scholar
  34. Özesmi SL, Tan CO, Özesmi U (2006) Methodological issues in building, training, and testing artificial neural networks in ecological applications. Ecol Model 195(1–2):83–93CrossRefGoogle Scholar
  35. Peters J, De Baets B, Verhoest NEC, Samson R, Degroeve S, De Becker P, Huybrechts W (2007) Random forests as a tool for predictive ecohydrological modelling. Ecol Model 207(2–4):304–318CrossRefGoogle Scholar
  36. Peters J, De Baets B, Samson R, Verhoest NEC (2008) Modelling groundwater-dependent vegetation patterns using ensemble learning. Hydrol Earth Syst Sci 12:603–613CrossRefGoogle Scholar
  37. Prasad AM, Iverson LR, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199CrossRefGoogle Scholar
  38. Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modeling species distributions? J Appl Ecol 41:193–200CrossRefGoogle Scholar
  39. Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinfo 8(25). doi: 10.1186/1471-2105-8-25
  40. ter Braak CFJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  41. Vaughan IP, Ormerod SJ (2005) Increasing the value of principle components analysis for simplifying ecological data: a case study with rivers and river birds. J Appl Ecol 42:487–497CrossRefGoogle Scholar
  42. Yee TW, Mitchell ND (1991) Generalized additive models in plant ecology. J Veg Sci 2:587–602CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • J. Peters
    • 1
  • N. E. C. Verhoest
    • 1
  • R. Samson
    • 2
  • P. Boeckx
    • 3
  • B. De Baets
    • 4
  1. 1.Laboratory of Hydrology and Water ManagementGhent UniversityGentBelgium
  2. 2.Department of Bioscience EngineeringUniversity of AntwerpAntwerpenBelgium
  3. 3.Department of Applied Analytical and Physical ChemistryGhent UniversityGentBelgium
  4. 4.Department of Applied Mathematics, Biometrics and Process ControlGhent UniversityGentBelgium

Personalised recommendations