Landscape Ecology

, Volume 23, Issue 10, pp 1171–1186 | Cite as

Small urban woodlands as biodiversity conservation hot-spot: a multi-taxon approach

  • Solène Croci
  • Alain Butet
  • Anita Georges
  • Rahim Aguejdad
  • Philippe Clergeau
Research Article


To evaluate the importance of urban woodlands to serve as potential sites for biodiversity conservation, we analysed bird, carabid beetle and small mammal community responses to urbanisation at different spatial scales. We analysed the relationships between the variations of the structure (species richness S, diversity H′ and dominance D) of animal communities of woodlands distributed along a rural–urban gradient, and the variations along this same gradient of (1) the vegetation within woodlands, (2) the landscape at 100 m and (3) 600 m around the woodlands. We identified the spatial scales whose variations along the gradient most affected each animal community structure, and characterised community responses to these variations. Our results showed that urbanisation affected taxa differently according to their dispersal ability. Carabid beetles, less mobile, seem to be sensitive to increasing fragmentation and built surfaces from periurban to town centre which could make their movement within the urban landscape difficult. Birds, mobile species, seem to be more sensitive to variations of the vegetation structure within woodlands from periurban to town centre that could affect their capacity to maintain in habitat patches. Although our study did not allow relating the small mammal community structure to urbanisation, it suggests that this taxa is sensitive to urban local disturbances. A relevant management scale of woodlands can be specified for each taxa conservation. Urban woodlands accommodate over 50% of the species present in periurban woodlands, and effective management could enhance this number. Woodlands seem to be a good choice for promoting biodiversity conservation in towns.


Birds Carabid beetles Dispersal abilities Habitat Landscape Small mammals Urbanisation 



We thank Patricia Le Quilliec and Vincent Péllissier for assistance in the field, Yannick Delettre and Nadia Michel for their help with statistical analysis, Damien Fourcy, Jérémie Guyon, Yann Rantier, Jean-Baptiste Pichancourt and Laurence Hubert for their advice about GIS, and Tim Legg and Christina Richardson who improved the English. We also thank Dr. Jari Niemelä and three anonymous reviewers for their helpful comments on earlier drafts. This study was carried out as part of the ECORURB Programme ( We are also grateful to the city of Rennes and Rennes Métropole for allowing us to carry out our surveys.


  1. Adams LW (1994) Urban wildlife habitats a landscape perspective. University of Minnesota Press, MinneapolisGoogle Scholar
  2. Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscape with different proportions of suitable habitat: a review. Oikos 71:355–366. doi: 10.2307/3545823 CrossRefGoogle Scholar
  3. Angold PG, Sadler JP, Hill MO et al (2006) Biodiversity in urban habitat patches. Sci Total Environ 360:196–204. doi: 10.1016/j.scitotenv.2005.08.035 PubMedCrossRefGoogle Scholar
  4. Aubry J (1950) Deux pièges pour la capture des petits rongeurs vivants. Mammalia 14:174–177Google Scholar
  5. Baker PJ, Ansell RJ, Dodds PAA et al (2003) Factors affecting the distribution of small mammals in an urban area. Mammal Rev 33:95–100. doi: 10.1046/j.1365-2907.2003.00003.x CrossRefGoogle Scholar
  6. Bibby CJ, Burgess ND, Hill DA et al (2000) Bird census techniques, 2nd edn. Academic Press, LondonGoogle Scholar
  7. Blair RB (1996) Land use and avian species diversity along an urban gradient. Ecol Appl 6:506–519. doi: 10.2307/2269387 CrossRefGoogle Scholar
  8. Bolger DT, Scott TA, Rotenberry JT (1997) Breeding bird abundance in an urbanizing landscape in Coastal Southern California. Conserv Biol 11:406–421. doi: 10.1046/j.1523-1739.1997.96307.x CrossRefGoogle Scholar
  9. Bowman J, Forbes G, Dilworth T (2001) Landscape context and small-mammal abundance in a managed forest. For Ecol Manage 140:249–255CrossRefGoogle Scholar
  10. Brennan SP, Schnell GD (2005) Relationship between bird abundances and landscape characteristics: the influence of scale. Environ Monit Assess 105:209–228. doi: 10.1007/s10661-005-3694-x PubMedCrossRefGoogle Scholar
  11. Burel F, Baudry J, Butet A et al (1998) Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecol 19:47–60. doi: 10.1016/S1146-609X(98)80007-6 CrossRefGoogle Scholar
  12. Butet A, Paillat G, Delettre Y (2006) Factors driving small rodents assemblages from field boundaries in agricultural landscapes of western France. Landsc Ecol 21:449–461. doi: 10.1007/s10980-005-4118-6 CrossRefGoogle Scholar
  13. Clergeau P, Savard JPL, Mennechez G et al (1998) Bird abundance and diversity along an urban-rural gradient: a comparative study between two cities on different continents. Condor 100:413–425. doi: 10.2307/1369707 CrossRefGoogle Scholar
  14. Clergeau P, Jokimäki J, Savard JPL (2001) Are urban bird communities influenced by the bird diversity of adjacent landscapes? J Appl Ecol 38:1122–1134. doi: 10.1046/j.1365-2664.2001.00666.x CrossRefGoogle Scholar
  15. Clergeau P, Jokimäki J, Snep R (2006) Using hierarchical levels for urban ecology. Trends Ecol Evol 21:660–661. doi: 10.1016/j.tree.2006.09.006 PubMedCrossRefGoogle Scholar
  16. de la Millán Peña N, Butet A, Delettre Y et al (2003) Response of the small mammal community to changes in western French agricultural landscapes. Landsc Ecol 18:265–278. doi: 10.1023/A:1024452930326 CrossRefGoogle Scholar
  17. Diaz M, Santos T, Telleria JL (1999) Effects of forest fragmentation on the winter body condition and population parameters of an habitat generalist, the wood mouse Apodemus sylvaticus: a test of hypotheses. Acta Oecol 20:39–49. doi: 10.1016/S1146-609X(99)80014-9 CrossRefGoogle Scholar
  18. Donnelly R, Marzluff JM (2004) Importance of reserve size and landscape context to urban bird conservation. Conserv Biol 18:733–745. doi: 10.1111/j.1523-1739.2004.00032.x CrossRefGoogle Scholar
  19. Dubois PJ, Le Maréchal P, Olioso G et al (2001) Inventaire des oiseaux de France. Nathan, ParisGoogle Scholar
  20. Dunford W, Freemark K (2004) Matrix matters: effects of surrounding land uses on forest birds near Ottawa, Canada. Landsc Ecol 20:497–511. doi: 10.1007/s10980-004-5650-5 CrossRefGoogle Scholar
  21. Ericson L, Hansson L, Larsson TB et al (1988) The importance of residual biotopes for fauna and flora. In: Schreiber KF (ed) Proceedings of the 2nd international seminar of the international association for landscape ecology, Munster, 1988Google Scholar
  22. Fenger J (1999) Urban air quality. Atmos Environ 33:4877–4900. doi: 10.1016/S1352-2310(99)00290-3 CrossRefGoogle Scholar
  23. Fernández-Juricic E, Schroeder N (2003) Do variations in scanning behavior affect tolerance to human disturbance? Appl Anim Behav Sci 84:219–234. doi: 10.1016/j.applanim.2003.08.004 CrossRefGoogle Scholar
  24. Germaine SS, Wakeling BF (2001) Lizard species distributions and habitat occupation along an urban gradient in Tucson, Arizona, USA. Biol Conserv 97:229–237. doi: 10.1016/S0006-3207(00)00115-4 CrossRefGoogle Scholar
  25. Gilbert OL (1989) The ecology of urban habitats. Chapman & Hall, CambridgeGoogle Scholar
  26. Heger T, Trepl L (2003) Predicting biological invasions. Biol Invasions 5:313–321. doi: 10.1023/B:BINV.0000005568.44154.12 CrossRefGoogle Scholar
  27. Ishitani M, Kotze DJ, Niemela J (2003) Changes in carabid beetle assemblages across an urban-rural gradient in Japan. Ecography 26:481–489. doi: 10.1034/j.1600-0587.2003.03436.x CrossRefGoogle Scholar
  28. Jeannel R (1941) Coleoptères Carabiques, Faune de France. vols 39–40. Librairie de la faculté des sciences, ParisGoogle Scholar
  29. Jokimäki J, Kaisanlahti-Jokimäki ML (2003) Spatial similarity of urban bird communities: a multiscale approach. J Biogeogr 30:1183–1193. doi: 10.1046/j.1365-2699.2003.00896.x CrossRefGoogle Scholar
  30. Jokimäki J, Kaisanlahti-Jokimäki ML, Sorace A et al (2005) Evaluation of the “safe nesting zone” hypothesis across an urban gradient: a multi-scale study. Ecography 28:59–70. doi: 10.1111/j.0906-7590.2005.04001.x CrossRefGoogle Scholar
  31. Kelcey JG, Rheinwald G (2005) Birds in European cities. Ginster Verlag, St. KatharinenGoogle Scholar
  32. Keller I, Nentwig W, Largiadèr CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994. doi: 10.1111/j.1365-294X.2004.02310.x PubMedCrossRefGoogle Scholar
  33. Kowarik I, Körner S (2005) Wild urban woodlands new perspectives for urban forestry. Springer, Berlin/HeidelbergGoogle Scholar
  34. Kozakiewicz M, Szacki J (1995) Movements of small mammals in a landscape: patch restriction or nomadism? In: Lidicker WZ (ed) Landscape approaches in mammalian ecology and conservation. University of Minnesota Press, Minneapolis, pp 78–94Google Scholar
  35. Leston LFV, Rodewald AD (2006) Are urban forests ecological traps for understory birds? An examination using Northern cardinals. Biol Conserv 131:566–574. doi: 10.1016/j.biocon.2006.03.003 CrossRefGoogle Scholar
  36. Lim HC, Sodhi NS (2004) Responses of avian guilds to urbanisation in a tropical city. Landsc Urban Plan 66:199–215. doi: 10.1016/S0169-2046(03)00111-7 CrossRefGoogle Scholar
  37. Loram A, Tratalos J, Warren PH et al (2007) Urban domestic gardens (X): the extent and structure of the resource in five major cities. Landsc Ecol 22:601–615. doi: 10.1007/s10980-006-9051-9 CrossRefGoogle Scholar
  38. Magurran AE (1988) Ecological diversity and its measurements. Princeton University Press, Princeton, New Jersey, p 215Google Scholar
  39. Marzluff JM, Ewing K (2001) Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restor Ecol 9:280–292. doi: 10.1046/j.1526-100x.2001.009003280.x CrossRefGoogle Scholar
  40. McDonnell MJ, Pickett STA (1990) Ecosystem structure and function along urban–rural gradients: an unexploited opportunity for ecology. Ecology 71:1232–1237. doi: 10.2307/1938259 CrossRefGoogle Scholar
  41. McGarigal K, Cushman SA, Neel MC et al (2002) Fragstats: spatial pattern analysis program for categorical maps. Computer software program, University of Massachusetts, Amherst.
  42. McKinney ML (2006) Urbanisation as a major cause of biotic homogenization. Biol Conserv 127:247–260. doi: 10.1016/j.biocon.2005.09.005 CrossRefGoogle Scholar
  43. Melles S, Glenn S, Martin K (2003) Urban bird diversity and landscape complexity: species–environment associations along a multiscale habitat gradient. Conserv Ecol 7:5 Google Scholar
  44. Niemelä J (1999) Ecology and urban planning. Biodivers Conserv 8:119–131. doi: 10.1023/A:1008817325994 CrossRefGoogle Scholar
  45. Niemelä J, Kotze DJ, Venn S et al (2002) Carabid beetle assemblages (Coleoptera, Carabidae) across urban–rural gradients: an international comparison. Landsc Ecol 17:387–401. doi: 10.1023/A:1021270121630 CrossRefGoogle Scholar
  46. Oksanen KJ, O’Hara RB (2005) Vegan: community ecology package. R package version 1.6–9.
  47. Ormerod SJ (2003) Restoration in applied ecology: editor’s introduction. J Appl Ecol 40:44–50. doi: 10.1046/j.1365-2664.2003.00799.x CrossRefGoogle Scholar
  48. Sadler JP, Small EC, Fiszpan H et al (2006) Investigating environmental variation and landscape characteristics of an urban–rural gradient using woodland carabid assemblages. J Biogeogr 33:1126–1138. doi: 10.1111/j.1365-2699.2006.01476.x CrossRefGoogle Scholar
  49. Savard JPL, Clergeau P, Mennechez G (2000) Biodiversity concepts and urban ecosystems. Landsc Urban Plan 48:131–142. doi: 10.1016/S0169-2046(00)00037-2 CrossRefGoogle Scholar
  50. Slabbekoorn H, Pamela Y, Hunt K (2007) Sound transmission and song divergence: a comparison of urban and forest acoustics. Condor 109:67–78. doi: 10.1650/0010-5422(2007)109[67:STASDA]2.0.CO;2 CrossRefGoogle Scholar
  51. Snep RPH, Opdam PFM, Baveco JM et al (2006) How peri-urban areas can strengthen animal populations within cities: a modeling approach. Biol Conserv 127:345–355. doi: 10.1016/j.biocon.2005.06.034 CrossRefGoogle Scholar
  52. Spence JR, Niemelä J (1994) Sampling carabid assemblages with pitfall traps: the madness and the method. Can Entomol 126:881–894CrossRefGoogle Scholar
  53. Stoddart DM (1980) Urban small mammals. J Zool 191:403–406CrossRefGoogle Scholar
  54. Thioulouse J, Chessel D, Dolédec S et al (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83. doi: 10.1023/A:1018513530268 CrossRefGoogle Scholar
  55. Verboom B, Van Apeldoorn R (1990) Effects of habitat fragmentation on the red squirrel, Sciurus vulgaris, L. Landsc Ecol 4:171–176. doi: 10.1007/BF00132859 CrossRefGoogle Scholar
  56. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384. doi: 10.1016/S0034-4257(03)00079-8 CrossRefGoogle Scholar
  57. Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev Camb Philos Soc 49:207–264. doi: 10.1111/j.1469-185X.1967.tb01419.x Google Scholar
  58. Wilcox BA, Murphy DO (1985) Conservation strategy: the effects of fragmentation on extinction. Am Nat 125:879–887. doi: 10.1086/284386 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Solène Croci
    • 1
    • 2
  • Alain Butet
    • 2
  • Anita Georges
    • 2
  • Rahim Aguejdad
    • 3
  • Philippe Clergeau
    • 4
    • 1
  1. 1.INRA SCRIBERennes CedexFrance
  2. 2.CAREN UMR CNRS 6553 ECOBIO, Université Rennes 1Rennes CedexFrance
  3. 3.UMR CNRS 6554 COSTEL LETG, Université Rennes 2Rennes CedexFrance
  4. 4.Muséum National d’Histoire NaturelleEcologie et gestion de la biodiversité, UMR 5173ParisFrance

Personalised recommendations