Advertisement

Landscape Ecology

, Volume 23, Issue 7, pp 757–769 | Cite as

Holocene palaeo-invasions: the link between pattern, process and scale in invasion ecology?

  • Lindsey Gillson
  • Anneli Ekblom
  • Katherine J. Willis
  • Cynthia Froyd
Article

Abstract

Invasion ecology has made rapid progress in recent years through synergies with landscape ecology, niche theory, evolutionary ecology and the ecology of climate change. The palaeo-record of Holocene invasions provides a rich but presently underexploited resource in exploring the pattern and process of invasions through time. In this paper, examples from the palaeo-literature are used to illustrate the spread of species through time and space, also revealing how interactions between invader and invaded communities change over the course of an invasion. The main issues addressed are adaptation and plant migration, ecological and evolutionary interactions through time, disturbance history and the landscape ecology of invasive spread. We consider invasions as a continuous variable, which may be influenced by different environmental or ecological variables at different stages of the invasion process, and we use palaeoecological examples to describe how ecological interactions change over the course of an invasion. Finally, the use of palaeoecological information to inform the management of invasions for biodiversity conservation is discussed.

Keywords

Climate change Disturbance Landscape connectivity Multi-factor hypothesis Homogenisation 

Notes

Acknowledgements

The authors thank two anonymous referees for their comments on the manuscript.

References

  1. Allen CD, Betancourt JL, Swetnam TW (2003) Landscape changes in the southwestern United States: techniques, long-term data sets, and trends. In: Land use history of North America. http://biology.usgs.gov/luhna/chap9.html
  2. Allison TD, Moeller RE, Davis MB (1986) Pollen in laminated sediments provides evidence for a mid-holocene forest pathogen outbreak. Ecology 67:1101–1105. doi: 10.2307/1939835 CrossRefGoogle Scholar
  3. Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626. doi: 10.1111/j.1365-2486.2004.00828.x CrossRefGoogle Scholar
  4. Bennett KD (1998) The power of movement in plants. Trends Ecol Evol 13:339–340. doi: 10.1016/S0169-5347(97)01324-4 CrossRefGoogle Scholar
  5. Betancourt JL, Schuster WS, Mitton JB, Anderson RS (1991) Fossil and genetic history of a pinyon pine (Pinus edulis) isolate. Ecology 72:1685–1697. doi: 10.2307/1940968 CrossRefGoogle Scholar
  6. Birks HH, Ammann B (2000) Two terrestrial records of rapid climatic change during the glacial-Holocene transition (14,000–9,000 calendar years B.P.) from Europe. Proceedings of the National Academy of Sciences 97:1390–1394Google Scholar
  7. Björkman L, Bradshaw R (1996) The immigration of Fagus sylvatica L., Picea abies (L.) Karst. into a natural forest stand in southern Sweden during the last 2000 years. J Biogeogr 23:235–244. doi: 10.1046/j.1365-2699.1996.00972.x CrossRefGoogle Scholar
  8. Bond W, Midgley G (2000) A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob Change Biol 6:865–869. doi: 10.1046/j.1365-2486.2000.00365.x CrossRefGoogle Scholar
  9. Bradshaw RHW, Lindbladh M (2005) Regional spread and stand-scale establishment of Fagus sylvatica and Picea abies in scandinavia: paleoperspective in ecology. Ecology 86:1679–1686. doi: 10.1890/03-0785 CrossRefGoogle Scholar
  10. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG et al (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci USA 102:15144–15148. doi: 10.1073/pnas.0505734102 PubMedCrossRefGoogle Scholar
  11. Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shifts during biological invasion. Ecol Lett 10:701–709. doi: 10.1111/j.1461-0248.2007.01060.x Google Scholar
  12. Brooker RW (2006) Plant-plant interactions and environmental change. New Phytol 171:271–284. doi: 10.1111/j.1469-8137.2006.01752.x
  13. Callaway RM, Aschehoug ET (2000) Invasive plants versus their neighbours: a mechanism for exotic invasion. Science 290:521–522. doi: 10.1126/science.290.5491.521 PubMedCrossRefGoogle Scholar
  14. Carrión JS, Andrade A, Bennett KD, Munuera M, Navarro C (2001) Crossing forest thresholds. Inertia and collapse in a Holocene sequence from south-central Spain. The Holocene 11:635–653CrossRefGoogle Scholar
  15. Clark JS (1998) Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. Am Nat 152:204–224. doi: 10.1086/286162 CrossRefPubMedGoogle Scholar
  16. Davis MB (1963) On the theory of pollen analysis. Am J Sci 261:897–912Google Scholar
  17. Davis MB, Calcote RR, Sugita S, Takahara H (1998) Patchy invasion and the origin of a hemlock-hardwoods forest mosaic. Ecology 79:2641–2659Google Scholar
  18. Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science 292:673–679. doi: 10.1126/science.292.5517.673 PubMedCrossRefGoogle Scholar
  19. Didham RK, Tylianakis JM, Hutchinson MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecol Evol 20:470–474PubMedCrossRefGoogle Scholar
  20. Foster D, Oswald W, Faison E, Doughty E, Hansen B (2006) A climatic driver for abrupt mid-Holocene vegetation dynamics and the hemlock decline in New England. Ecology 87:2959–2966PubMedCrossRefGoogle Scholar
  21. Gillson L, Willis KJ (2004) As Earth’s testimonies tell’ wilderness conservation in a changing world. Ecol Lett 7(10):990–998CrossRefGoogle Scholar
  22. Gray S, Betancourt J, Jackson S, Eddy R (2006) Role of multidecadal climate variability in a range extension of pinyon pine. Ecology 87:1124–1130PubMedCrossRefGoogle Scholar
  23. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  24. Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinall R et al (2006) Making better biogeographical predictions of species’ distributions. J Appl Ecol 43:386–392. doi: 10.1111/j.1365-2664.2006.01164.x CrossRefGoogle Scholar
  25. Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19:470–474. doi: 10.1016/j.tree.2004.07.005 PubMedCrossRefGoogle Scholar
  26. Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495. doi: 10.1046/j.1466-822X.2002.00306.x CrossRefGoogle Scholar
  27. Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi: 10.1111/j.0022-0477.2004.00953.x CrossRefGoogle Scholar
  28. Hunter ML, Jacobson GL Jr, Webb TIII (1988) Paleoecology and the coarse-filter approach to maintaining biological diversity. Conserv Biol 2:375–385CrossRefGoogle Scholar
  29. Jackson ST, Booth RK (2002) The role of Late Holocene climate variability in the expansion of yellow birch in the western Great Lakes region. Divers Distrib 8:275–284CrossRefGoogle Scholar
  30. Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170. doi: 10.1016/S0169-5347(02)02499-0 CrossRefGoogle Scholar
  31. Keitt TH, Lewis MA, Holt RD (2004) Allee effects, invasion pinning and species’ borders. Am Nat 157:203–216. doi: 10.1086/318633 CrossRefGoogle Scholar
  32. Kerfoot WC, Weider LJ (2004) Experimental paleoecology (resurrection ecology): chasing Van Valen’s Red Queen. Limnol Oceanogr 49:1300–1316Google Scholar
  33. Kinnison MT, Hairston NG Jr (2007) Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct Ecol 21:444–454. doi: 10.1111/j.1365-2435.2007.01278.x CrossRefGoogle Scholar
  34. Lyford ME, Jackson ST, Betancourt JL, Gray ST (2003) Influence of landscape structure and climate variability on a late Holocene plant migration. Ecol Monogr 77:567–583. doi: 10.1890/03-4011 CrossRefGoogle Scholar
  35. Lynch EA, Saltonstall K (2002) Palaeoecological and genetic analyses provide evidence for recent colonization of native Phragmites Australis populations in a Lake Superior Wetland. Wetlands 22:637–646. doi: 10.1672/0277-5212(2002)022[0637:PAGAPE]2.0.CO;2 CrossRefGoogle Scholar
  36. Martinez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammals species. Glob Ecol Biogeogr 13:305–314. doi: 10.1111/j.1466-822X.2004.00107.x CrossRefGoogle Scholar
  37. McLachlan JS, Hellmann JJ, Schwartz MW (2007) A framework for debate of assisted migration in an era of climate change. Conserv Biol 21:297–302. doi: 10.1111/j.1523-1739.2007.00676.x PubMedCrossRefGoogle Scholar
  38. Millar CI, Woolfenden WB (1999) The role of climate change in interpreting historical variability. Ecol Appl 9:1207–1216. doi: 10.1890/1051-0761(1999)009[1207:TROCCI]2.0.CO;2 CrossRefGoogle Scholar
  39. Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627. doi: 10.1038/nature01317 PubMedCrossRefGoogle Scholar
  40. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN et al (2006) Biotic interactions and plant invasions. Ecol Lett 9(6):726–740PubMedCrossRefGoogle Scholar
  41. Mooney HA, Cleland EE (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451. doi: 10.1073/pnas.091093398 PubMedCrossRefGoogle Scholar
  42. Moorcroft PR, Pacala SW, Lewis MA (2006) Potential role of natural enemies during tree range expansions following climate change. J Theor Biol 24:601–616. doi: 10.1016/j.jtbi.2005.12.019 CrossRefGoogle Scholar
  43. Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24. doi: 10.1016/j.tree.2003.09.010 PubMedCrossRefGoogle Scholar
  44. Parmesan C, Gains S, Gonzalez L, Kaufman DM, Kingsolver J, Peterson AT et al (2005) Empirical perspectives on species borders: from traditional biogeography to global change. Oikos 108:58–75. doi: 10.1111/j.0030-1299.2005.13150.x CrossRefGoogle Scholar
  45. Parshall T (2002) Late-Holocene stand-scale invasion by hemlock (Tsuga canadensis) at its western range limit. Ecology 83:1386–1398CrossRefGoogle Scholar
  46. Pascal M, Lorvelec O (2005) Holocene turnover of the French vertebrate fauna. Biol Invasions 7:99–106. doi: 10.1007/s10530-004-9639-4 CrossRefGoogle Scholar
  47. Pearson RG (2006) Climate change and the migration capacity of species. Trends Ecol Evol 21:111–113. doi: 10.1016/j.tree.2005.11.022 PubMedCrossRefGoogle Scholar
  48. Perrings C, Dehnen-Schmutz K, Touza J, Williamson M (2005) How to manage biological invasions under globalization. Trends Ecol Evol 20:212–215. doi: 10.1016/j.tree.2005.02.011 PubMedCrossRefGoogle Scholar
  49. Petit RJ, Bialozyt R, Garnier-Gére P, Hampe A (2004) Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. For Ecol Manag 197:117–137. doi: 10.1016/j.foreco.2004.05.009 CrossRefGoogle Scholar
  50. Pulliam HR (2000) On the relationship between niche and distribution. Ecol Lett 3:349–361. doi: 10.1046/j.1461-0248.2000.00143.x CrossRefGoogle Scholar
  51. Rejmánek M (1999) Holocene invasions: finally the resolution ecologists were waiting for!. Trends Ecol Evol 14:8–10. doi: 10.1016/S0169-5347(98)01517-1 PubMedCrossRefGoogle Scholar
  52. Ricciardi A (2007) Are modern biological invasions an unprecedented form of global change? Conserv Biol 21:329–336. doi: 10.1111/j.1523-1739.2006.00615.x PubMedCrossRefGoogle Scholar
  53. Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants: concepts and definitions. Divers Distrib 6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x CrossRefGoogle Scholar
  54. Ronce O (2001) Understanding plant dispersal and migration. Trends Ecol Evol 16:663–664. doi: 10.1016/S0169-5347(01)02348-5 CrossRefGoogle Scholar
  55. Rooney TP, Olden JD, Leach MK, Rogers DA (2007) Biotic homogenization and conservation prioritization. Biol Conserv 134:447–450. doi: 10.1016/j.biocon.2006.07.008 CrossRefGoogle Scholar
  56. Siemann E, Rogers WE (2001) Genetic differences in growth of an invasive tree species. Ecol Lett 4:514–518. doi: 10.1046/j.1461-0248.2001.00274.x CrossRefGoogle Scholar
  57. Svenning J-C, Skov F (2004) Limited filling of the potential range in European tree species. Ecol Lett 7:565–573. doi: 10.1111/j.1461-0248.2004.00614.x CrossRefGoogle Scholar
  58. Svenning J-C, Skov F (2005) The relative roles of environment and history as controls of tree species composition and richness in Europe. J Biogeogr 32:1019–1033. doi: 10.1111/j.1365-2699.2005.01219.x CrossRefGoogle Scholar
  59. Swetnam TW, Allen CD, Betancourt JL (1999) Applied historical ecology: using the past to manage for the future. Ecol Appl 9:1189–1206. doi: 10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2 CrossRefGoogle Scholar
  60. van Leeuwen JFN, Schäfer H, van der Knapp WO, Rittenour T, Björck S, Ammann B (2005) Native or introduced? Fossil pollen and spores may say. An example form the Azores islands. NEOBIOTA 6:27–34Google Scholar
  61. Von Holle B, Delcourt HR, Simberloff D (2003) The importance of biological inertia in plant community resistence to invasion. J Veg Sci 14:425–432. doi: 10.1658/1100-9233(2003)014[0425:TIOBII]2.0.CO;2 CrossRefGoogle Scholar
  62. Williams JW, Post DM, Cwynar LC, Lotter AF, Levesque AJ (2002) Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30:971–974 CrossRefGoogle Scholar
  63. Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation science. Science 314:1261–1265. doi: 10.1126/science.1122667 PubMedCrossRefGoogle Scholar
  64. Willis KJ, Gillson L, Knapp S (2007) Biodiversity hotspots through time: using the past to manage the future: an introduction. Philos Trans R Soc Lond B Biol Sci 362:169–174. doi: 10.1098/rstb.2006.1976 PubMedCrossRefGoogle Scholar
  65. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203. doi: 10.1046/j.1523-1739.2002.01064.x CrossRefGoogle Scholar
  66. With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815. doi: 10.1111/j.0272-4332.2004.00480.x PubMedCrossRefGoogle Scholar
  67. Woods KD (2000) Long-term change and spatial pattern in a late-successional hemlock-northern hardwood forest. J Ecol 88:267–282. doi: 10.1046/j.1365-2745.2000.00448.x CrossRefGoogle Scholar
  68. Woods KD, Davis MB (1989) Paleoecology of range limits: beech in the upper peninsula of Michigan. Ecology 70:681–696. doi: 10.2307/1940219 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lindsey Gillson
    • 1
  • Anneli Ekblom
    • 2
  • Katherine J. Willis
    • 2
    • 3
  • Cynthia Froyd
    • 2
  1. 1.Plant Conservation Unit, Botany DepartmentUniversity of Cape TownRondeboschSouth Africa
  2. 2.Oxford Long-Term Ecology Laboratory, Biodiversity Research GroupOxford University Centre for the EnvironmentOxfordUnited Kingdom
  3. 3.Department of BiologyUniversity of BergenBergenNorway

Personalised recommendations