Advertisement

Landscape Ecology

, Volume 23, Issue 6, pp 673–688 | Cite as

Persistent changes in forest vegetation and seed bank 1,600 years after human occupation

  • Jan Plue
  • Martin Hermy
  • Kris Verheyen
  • Patrice Thuillier
  • Robert Saguez
  • Guillaume Decocq
Research Article

Abstract

Past land use is an important factor determining vegetation in temperate deciduous forests. Little is known about the long-term persistence of these impacts on vegetation but especially on the seed bank. This study assessed whether soil characteristics remain altered 1,600 years after human occupation and if this yielded persistent differences in forest plant communities and their seed bank in particular. Compiègne forest is located in northern-France and has a history of continuous forest cover since the end of Roman times. Twenty-four Gallo-Roman and 24 unoccupied sites were sampled and data were analysed using paired sample tests to investigate whether soil, vegetation and seed bank still differed significantly. The soil was persistently altered on the Gallo-Roman sites resulting in elevated phosphorus levels and pH (dependent on initial soil conditions) which translated into increased vegetation and seed bank species richness. Though spatially isolated, Gallo-Roman sites supported both a homogenized vegetation and seed bank. Vegetation differences were not the only driver behind seed bank differences. Similarity between vegetation and seed bank was low and the possibility existed that agricultural ruderals were introduced via the former land use. Ancient human occupation leaves a persistent trace on forest soil, vegetation and seed bank and appears to do so at least 1,600 years after the former occupation. The geochemical alterations created an entirely different habitat causing not only vegetation but also the seed bank to have altered and homogenized composition and characteristics. Seed bank differences likely persisted by the traditional forest management and altered forest environment.

Keywords

Anthropogenic legacies Biodiversity France Gallo-Roman occupation Historical ecology Land use history Seed bank Soil Vegetation 

Notes

Acknowledgements

J.P. would like to thank Eric van Beek for the help provided with the seed bank experiment. The authors thank Stéphanie Renaux for her contribution to field work and preliminary data analysis and the French ‘Office National des Forêts’ for having facilitated our field work and provided useful information about abiotic conditions and management.

References

  1. Anne P (1945) Sur le dosage rapide du carbone organique de sols. Annales Agronomiques 15:161–172 (in French)Google Scholar
  2. Aubert G (1978) Méthodes d’ analyse des sols. Edition C.R.D.P., Marseille (in French)Google Scholar
  3. Bellemare J, Motzkin G, Foster DR (2002) Legacies of the agricultural past in the forested present: an assessment of historical land use effects on rich mesic forests. J Biogeogr 29:1401–1420CrossRefGoogle Scholar
  4. Bigwood DW, Inouye DW (1988) Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69:497–507CrossRefGoogle Scholar
  5. Bossuyt B, Hermy M (2000) Restoration of the understorey layer of recent forest bordering ancient forest. Appl Veg Sci 3:43–50CrossRefGoogle Scholar
  6. Bossuyt B, Hermy M (2001) Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography 24:225–238CrossRefGoogle Scholar
  7. Bossuyt B, Hermy M, Deckers J (1999) Migration of herbaceous plant species across ancient-recent forest ecotones in central Belgium. J Ecol 87:628–638CrossRefGoogle Scholar
  8. Bossuyt B, Heyn M, Hermy M (2002) Seed bank and vegetation composition of forest stands of varying age in central Belgium: consequences for regeneration of ancient forest vegetation. Plant Ecol 162:33–48CrossRefGoogle Scholar
  9. Bray RH, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45CrossRefGoogle Scholar
  10. Briggs JM, Spielmann KA, Schaafsma H et al (2006) Why ecology needs archaeologists and archaeology needs ecologists. Front Ecol Environ 4(4):180–188CrossRefGoogle Scholar
  11. Bürgi M, Gimmi U (2007) Three objectives of historical ecology: the case of litter collecting in Central Europena forests. Landsc Ecol 22:77–87CrossRefGoogle Scholar
  12. Cain ML, Damman H, Muir A (1998) Seed dispersal and the Holocene migration of woodland herbs. Ecol Monogr 68:325–347Google Scholar
  13. Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81:2314–2330Google Scholar
  14. Dambrine E, Dupouey J-L, Laüt L et al (2007) Present forest biodiversity patterns in France related to former Roman agriculture. Ecology 88:1430–1439PubMedCrossRefGoogle Scholar
  15. Decocq G, Vieille V, Racinet P (2002) Influence des facteurs historiques sur la végétation actuelle: le cas des mottes castrales en milieu forestier (Picardie, France). Acta Bot Gall 149:197–215 (in French)Google Scholar
  16. Doyen B, Thuillier P, Decocq G (2004) Archéologie des milieux boisés en Picardie. Revue Archéologique de Picardie 1/2:149–164 (in French)Google Scholar
  17. Dupouey J-L, Dambrine E, Lafitte JD et al (2002) Irreversible impact of past land use on forest soils and biodiversity. Ecology 83:2978–2984CrossRefGoogle Scholar
  18. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart (in German)Google Scholar
  19. Ellenberg H, Weber HE, Ruprcht D et al (1992) Zeigerwerte von pflanzen in Mitteleuropa. Scr Geobot 18:1–258 (in German)Google Scholar
  20. Flinn KM, Vellend M (2005) Recovery of forest plant communities in post-agricultural landscapes. Front Ecol Environ 3:243–250CrossRefGoogle Scholar
  21. Flinn KM, Vellend M, Marks PL (2005) Environmental causes and consequences of forest clearance and agricultural abandonment in central New York, USA. J Biogeogr 32:439–452CrossRefGoogle Scholar
  22. Fraterrigo JM, Turner MG, Pearson SM (2006) Interactions between past land use, life-history traits and understory spatial heterogeneity. Landsc Ecol 21:777–790CrossRefGoogle Scholar
  23. Graae BJ, Sunde PB, Fritzborger B (2003) Vegetation and soil differences in ancient opposed to new forests. For Ecol Manage 117:179–190CrossRefGoogle Scholar
  24. Harrelson SM, Matlack GR (2006) Influence of stand age and physical environment on the herb composition of second-growth forest, Strouds Run, Ohio, USA. J Biogeogr 33:1139–1149CrossRefGoogle Scholar
  25. Hermy M, Honnay O, Firbank L et al (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22CrossRefGoogle Scholar
  26. Honnay O, Hermy M, Coppin P (1999) Impact of habitat quality on forest plant species colonization. For Ecol Manage 115:157–170CrossRefGoogle Scholar
  27. Hunt R, Hogdson JH, Thompson K et al (2004) A new practical tool for deriving a functional signature for herbaceous vegetation. Appl Veg Sci 7:163–170CrossRefGoogle Scholar
  28. Kent M, Coker P (1992) Vegetation description and analysis. A practical approach. Wiley, ChichesterGoogle Scholar
  29. Koerner W, Dupouey J-L, Dambrine E et al (1997) Influence of past land-use on the vegetation and soils of present day forest in the Vosges mountains, France. J Ecol 85:351–358CrossRefGoogle Scholar
  30. Lambinon J, De Langhe J-E, Delvosalle L et al (1998) Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebieden (Pteridofyten en Spermatofyten). Nationale plantentuin van België, Meise (in Dutch)Google Scholar
  31. Lanier L, Badré M, Delabraze P et al (1986) Précis de sylviculture. ENGREF, Nancy (in French)Google Scholar
  32. Leonardi G, Miglavacca M, Nardi S (1999) Soil phosphorus analysis as an integrative tool for recognizing buried ancient ploughsoils. J Archaeol Sci 26:343–352CrossRefGoogle Scholar
  33. Loeppert RH, Suarez DL (1996) Carbonate and gypsum. In: Bigham JM, Bartels JM (eds) Methods of soil analysis, third part, chemical methods. Soil Science Society of America, Madison, pp 437–474Google Scholar
  34. McLauchlan K (2006) The nature and longevity of agricultural impacts on soil carbon and nutrients: a review. Ecosystems 9:1364–1382CrossRefGoogle Scholar
  35. Maussion A (2003) Occupation ancienne du sol et milieux forestiers actuels, en France métropolitaine. Synthèse bibliographique. INRA-Nancy, Champenoux (in French)Google Scholar
  36. O.N.F. (1995) Foret domaniale de Compiegne – Révision d’ amenagement 1996–2010. Office National des Forets – Direction Nationale de Picardie – Division de Compiegne, Compiègne (in French)Google Scholar
  37. Pansu M, Gautheyrou J (2003) L’analyse du Sol Minéralogique, Organique et Minérale. Springer-Verlag, Paris (in French)Google Scholar
  38. Peterken GF (1996) Natural woodland: ecology and conservation in Northern temperate regions. Cambridge University Press Inc., United KingdomGoogle Scholar
  39. Peterken GF, Game M (1984) Historical factors affecting the number and distribution of vascular plant species in the woodlands of central Lincolnshire. J Ecol 72:155–182CrossRefGoogle Scholar
  40. Pounds NJG (1973) An historical geography of Europe 450 B.C.–A.D. 1330. Cambridge University press Inc., United KingdomGoogle Scholar
  41. Rameau JC, Mansion D, Dumé G et al (1989) Flore Forestière Française, Guide Ecologique Illustré. 1. Plaines et Collines. Institut pour le développement forestier, Paris (in French)Google Scholar
  42. Raup DM, Crick RE (1979) Measurement of faunal diversity in paleontology. J Paleontol 53:1213–1227Google Scholar
  43. Runkle JR (1985) The disturbance regime in temperate forests. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, London, pp 17–33Google Scholar
  44. Richards PW, Clapham AR (1941) Juncus effusus L J Ecol 29:375–380CrossRefGoogle Scholar
  45. Sandor JA, Gersper PL, Hawley JW (1990) Prehistoric agricultural Terraces and soils in the Mimbres area, New Mexico. World Arch 22(1):70–86CrossRefGoogle Scholar
  46. Sandor JA, Eash NS (1995) Ancient agricultural soils in the Andes of Southern Peru. Soil Sci Soc Am J 59:170–179Google Scholar
  47. Schulte LA, Mladenoff DJ, Crow TR et al (2007) Homogenization of Northern U.S. Great lakes forest due to human land use. Landsc Ecol 22:1089–1103CrossRefGoogle Scholar
  48. Siegel S, Castellan NJJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill book company, SingaporeGoogle Scholar
  49. SPSS (2003) SPSS Inc., ChicagoGoogle Scholar
  50. Ter Heerdt GNJ, Verweij GL, Bekker RM et al (1996) An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Funct Ecol 10:144–151CrossRefGoogle Scholar
  51. Thompson K, Grime JP (1979) Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. J Ecol 67:893–921CrossRefGoogle Scholar
  52. Thompson K, Bakker JP, Bekker RM et al (1998) Ecological correlates of seed persistence in soil in the North-West European flora. J Ecol 86:163–169CrossRefGoogle Scholar
  53. Thuillier P (2004) La prospection en milieu boisé. In: Schwerdroffer J, Racinet P (eds) Méthodes et initiations d’histoire et d’archéologie. Editions du Temps, Nantes, pp 26–37 (in French)Google Scholar
  54. Tombal P (1972) Etude phytocoenologique et esquisse macrobiocoenotique du proclimax forestier (Ilici-Fagetum) des Beaux-Monts de Compiègne (Oise-France). Bulletin de la société botanique du nord de la France 25:19–52 (in French)Google Scholar
  55. Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114CrossRefGoogle Scholar
  56. Vanwalleghem T, Verheyen K, Hermy M et al (2004) Legacies of Roman land-use in the present-day vegetation in Meerdaal Forest (Belgium)? Belg J Bot 137:181–187Google Scholar
  57. Vellend M, Verheyen K, Flinn KM et al (2007) Homogenization of forest plant communities and weakening of species-environment relationships via agricultural land use. J Ecol 95:565–573CrossRefGoogle Scholar
  58. Verheyen K, Hermy M (2001) The relative importance of dispersal limitation of vascular plants in secondary forest succession in Muizen forest, Belgium. J Ecol 89:829–840CrossRefGoogle Scholar
  59. Verheyen K, Bossuyt B, Hermy M et al (1999) The land use history (1278–1990) of a mixed hardwood forest in western Belgium and its relationship with chemical soil characteristics. J Biogeogr 26:1115–1128CrossRefGoogle Scholar
  60. Watkinson AR, Riding AE, Cowie NR (2001) A community and population perspective of the possible role of grazing in determining the ground flora of ancient woodlands. Forestry 74:231–239CrossRefGoogle Scholar
  61. Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science 314:1261–1265PubMedCrossRefGoogle Scholar
  62. Wood T, Bormann FH, Voigt GK (1984) Phosphorus cycling in a Northern Hardwood Forest: biological and chemical control. Science 223:391–393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jan Plue
    • 1
  • Martin Hermy
    • 1
  • Kris Verheyen
    • 2
  • Patrice Thuillier
    • 3
  • Robert Saguez
    • 3
  • Guillaume Decocq
    • 3
  1. 1.Division for Forest, Nature and Landscape ResearchKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Laboratory of ForestryGhent UniversityGhentBelgium
  3. 3.Department of BotanyUniversity of Picardie Jules VerneAmiens CedexFrance

Personalised recommendations