Landscape Ecology

, Volume 22, Issue 8, pp 1187–1199 | Cite as

Small-scale effects of historical land use and topography on post-cultural tree species composition in an Alpine valley in southern Switzerland

  • Sina Muster
  • Helmut Elsenbeer
  • Marco Conedera
Research Article


Investigations of spatial patterns in forest tree species composition are essential in the understanding of landscape dynamics, especially in areas of land-use change. The specific environmental factors controlling the present patterns, however, vary with the scale of observation. In this study we estimated abundance of adult trees and tree regeneration in a Southern Alpine valley in Ticino, Switzerland. We hypothesized that, at the present scale, spatial pattern of post-cultural tree species does not primarily depend on topographic features but responds instead to small-scale variation in historical land use. We used multivariate regression trees to relate species abundances to environmental variables. Species matrices were comprised of single tree species abundance as well as species groups. Groups were formed according to common ecological species requirements with respect to shade tolerance, soil moisture and soil nutrients. Though species variance could only be partially explained, a clear ranking in the relative importance of environmental variables emerged. Tree basal area of formerly cultivated Castanea sativa (Mill.) was the most important factor accounting for up to 50% of species’ variation. Influence of topographic attributes was minor, restricted to profile curvature, and partly contradictory in response. Our results suggest the importance of biotic factors and soil properties for small-scale variation in tree species composition and need for further investigations in the study area on the ecological requirements of tree species in the early growing stage.


Post-cultural tree species Competition Castanea sativa (Mill.) Chestnut orchards Chestnut coppice Multivariate regression trees (MRT) 



This work was supported in part by a DAAD (German Academic Exchange Service) grant for Sina Muster. We thank Jan Strohschein and Merja Spott for their help with data collection and Patrick Fonti for his help with tree ring analyses.


  1. Ambroise R, Frapa P, Giorgis S (1989) Paysage de terrasses. Edisud, Aix-en-Provence, FranceGoogle Scholar
  2. Austin MP, Smith TM (1989) A new model for the continuum concept. Vegetatio 83:35–47CrossRefGoogle Scholar
  3. Bätzing W (2003) Die Alpen: Geschichte und Zukunft einer europäischen Kulturlandschaft. Beck, München, GermanyGoogle Scholar
  4. Bedeneau M, Pages L (1984) Study of the growth rings of roots of coppiced trees. Ann Sci Forest 41(1): 59–68Google Scholar
  5. Beers TW, Dress PE, Wensel LC (1966) Aspect transformation in site productivity research. Am Sci 54:691–692Google Scholar
  6. Bellehumeur C, Legendre P (1998) Multiscale sources of variation in ecological variables: modeling spatial dispersion, elaborating sampling designs. Landsc Ecol 13:15–25CrossRefGoogle Scholar
  7. Bernetti G (1995) Selvicoltura speciale. UTET, Torino, ItalyGoogle Scholar
  8. Blanchemanche P (1990) Bâtisseurs de Paysages: terrassement, épierrement et petite hydraulique agricoles en Europes, XVIIe-XIXe siècles. Edition de la Maison des sciences de l’homme, Paris, FranceGoogle Scholar
  9. Blaser P, Kernebeek P, Tebbens L, Van Breemen N, Luster J (1997) Cryptopodzolic soils in Switzerland. Eur J Soil Sci 48:411–423CrossRefGoogle Scholar
  10. Bolstad PV, Swank W, Vose J (1998) Predecting Southern Appalachian overstory vegetation with digital terrain data. Landsc Ecol 13:271–283CrossRefGoogle Scholar
  11. Breiman L, Friedman J et al (1984) Classification and regression trees. Wadsworth, Belmont, California, USAGoogle Scholar
  12. Bridge SRJ, Johnson EA (2000) Geomorphic principles of terrain organization and vegetation gradients. J Veg Sci 11:57–70CrossRefGoogle Scholar
  13. Burrough PA, MacDonnell R (1998) Principles of geographical information systems. Oxford University Press, Oxford, EnglandGoogle Scholar
  14. Canale A (1958) Geomorphologie der Valle Onsernone. Ph.D. Thesis, Grafica Bellinzona, Bellinzona, SwitzerlandGoogle Scholar
  15. Cernusca A, Bahn M, Chemini C, Graber W, Siegwolf R, Tappeiner U, Tenhunen J (1998) ECOMONT: a combined approach of field measurements and process-based modelling for assessing effects of land-use changes in mountain landscapes. Ecol Modell 113:167–178CrossRefGoogle Scholar
  16. Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaeobotany 13:161–179Google Scholar
  17. Conedera M, Stanga P, Lischer C, Stöckli V (2000) Competition and dynamics in abandoned chestnut orchards in southern Switzerland. Ecol Mediterr 26(1–2):101–112Google Scholar
  18. Conedera M, Stanga P, Oester B, Bachmann P (2001) Different post-culture dynamics in abandoned chestnut orchards and coppices. For Snow Landsc Res 76:487–492Google Scholar
  19. De’Ath G (2002) Multivariate regression trees: a new technique for modeling species–environmental relationships. Ecology 83:1105–1117Google Scholar
  20. De’Ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192CrossRefGoogle Scholar
  21. de Blois S, Domon G, Bouchard A (2001) Environmental, historical, and contextual determinants of vegetation cover: a landscape perspective. Landsc Ecol 16:421–436CrossRefGoogle Scholar
  22. del Barrio G, Alvera B, Puigdefabregas J, Diez C (1997) Response of high mountain landscape to topographic variables: central Pyrenees. Landsc Ecol 12 (2): 95–115Google Scholar
  23. Dionea SA (2001) Le tipologie forestali della fascia castanile ticinese e le loro tendenze evolutive. Locarno, SwitzerlandGoogle Scholar
  24. Elsenbeer H (1997) Die Reaktion von Bodeneigenschaften auf Klimaänderungen: eine Analogsimulation. vdf, Hochsch.-Verl. an der ETH, Zürich, SwitzerlandGoogle Scholar
  25. Fonti P, Cherubini P, Rigling A, Weber P, Biging G (2006) Tree rings show competition dynamics in abandoned Castanea sativa coppices after land-use changes. J Veg Sci 17:103–112CrossRefGoogle Scholar
  26. Gerhardt F, Foster DR (2002) Physiographical and historical effects on forest vegetation in central New England, USA. J Biogeogr 29:1421–1437CrossRefGoogle Scholar
  27. Glavac V (1996) Vegetationsökologie. Fischer, Jena, GermanyGoogle Scholar
  28. Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12CrossRefGoogle Scholar
  29. Gutersohn H (1961) Alpen: 1. Teil, Wallis, Tessin, Graubünden. Geographie der Schweiz in drei Bänden, Bd. 2. Geographischer Verlag Zürich, SwitzerlandGoogle Scholar
  30. Hall B, Motzkin G, Foster DR, Syfert M, Burk J (2002) Three hundred years of forest and land-use change in Massachusetts, USA. J Biogeogr 29:1319–1335CrossRefGoogle Scholar
  31. Henderson BL, Bui EN, Moran CJ, Simon DAP (2004) Australia-wide predictions of soil properties using decision trees. Geoderma 124:383–398CrossRefGoogle Scholar
  32. Hietel E, Waldhardt R, Otte A (2004) Analysing land-cover changes in relation to environmental variables in Hesse, Germany. Landsc Ecol 19:473–489CrossRefGoogle Scholar
  33. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  34. Keller M (ed) (2005) Swiss national forest inventory. Field manual for the third inventory 2004–2007. Eidg. Forschungsanstalt WSL, Birmensdorf, SwitzerlandGoogle Scholar
  35. Landolt E (1977) Ökologische Zeigerwerte zur Schweizer Flora. ETH, Zürich, SwitzerlandGoogle Scholar
  36. Larsen DR (2004) Multivariate regression trees for analysis of abundance data. Biometrics 60:543–549PubMedCrossRefGoogle Scholar
  37. Lauber K, Wagner G (1996) Flora Helvetica. Haupt, Bern, SwitzerlandGoogle Scholar
  38. Lawson D, Inouye RS, Huntly N, Carson WP (1999) Patterns of woody plant abundance, recruitment, mortality, and growth in a 65 year chronosequence of old-fields. Plant Ecol 145:267–279CrossRefGoogle Scholar
  39. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967CrossRefGoogle Scholar
  40. Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19:389–399CrossRefGoogle Scholar
  41. Lyr H, Polster H, Fiedler H-J (1967) Gehölzphysiologie. VEB Gustav Fischer Verlag, Jena, GermanyGoogle Scholar
  42. Michaelsen J, Schimel DS, Friedl MA, Davis FW, Dubayah RC (1994) Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. J Veg Sci 5:673–686CrossRefGoogle Scholar
  43. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30CrossRefGoogle Scholar
  44. Motzkin G, Eberhardt R, Hall B, Foster DR, Harrod J, MacDonald D (2002) Vegetation variation across Cape Cod, Massachusetts: environmental and historical determinants. J Biogeogr 29:1439–1454CrossRefGoogle Scholar
  45. Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD (2004) An introduction to decision tree modeling. J Chemometrics 18:275–285CrossRefGoogle Scholar
  46. Paci M, Maltoni A, Tani A (2000) I castagneti abbandonati della Toscana: dinamiso e proposte gestionali. In: Bucci G, Minotta G, Borghetti M (eds) Applicazioini e prospettive per la ricerca forestale italiana. Atti del II congresso della Società Italiana die Selvicoltura ed Ecologia Forestale, Bologna, 20–23 October 1999. 9–16Google Scholar
  47. Philippi TE, Dixon PM, Tayler BE (1998) Detecting trends in species composition. Ecol Appl 8:300–308CrossRefGoogle Scholar
  48. Pinder III JE, Kroh GC, White JD, Basham May AM (1997) The relationship between vegetation type and topography in Lassen Volcanic National Park. Plant Ecol 131:17–29CrossRefGoogle Scholar
  49. Pividori M, Armando F, Conedera M (2006) Post cultural dynamics in a mixed chesnut coppice at its ecological boder. Acta Hortic (ISHS) 693:219–224Google Scholar
  50. Rozas V (2003) Regeneration patterns, dendroecology, and forest-use history in an old-growth beech–oak lowland forest in Northern Spain. For Ecol Manage 182:175–194CrossRefGoogle Scholar
  51. Schwarz PA, Fahey TJ, McCulloch CE (2003) Factors controlling spatial variation of tree species abundance in a forested landscape. Ecology 84:1862–1878CrossRefGoogle Scholar
  52. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago, USAGoogle Scholar
  53. Szwagrzyk J, Czerwczak M (1993) Spatial patterns of trees in natural forests of East-Central Europe. J Veg Sci 4:469–476CrossRefGoogle Scholar
  54. Tappeiner U, Tasser E, Tappeiner G (1998) Modelling vegetation patterns using natural and anthropogenic influence factors: preliminary experience with a GIS based model applied to an Alpine area. Ecol Modell 113:225–237CrossRefGoogle Scholar
  55. Turner MG (2005) Landscape ecology in North America: past, present, and future. Ecology 86:1967–1974CrossRefGoogle Scholar
  56. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Pattern and process. Springer, New York, USAGoogle Scholar
  57. Vogel S (2005) Der Einfluss der Terrassierung auf die Pedogenese am Beispiel eines südalpinen Tales. M. Sc. Thesis, University of Potsdam: Potsdam, Germany. 169 ppGoogle Scholar
  58. Waldhardt R, Simmering D, Otte A (2004) Estimation and predection of plant species richness in a mosaic landscape. Landsc Ecol 19:211–226CrossRefGoogle Scholar
  59. Waring RH, Running SW (1998) Forest ecosystems: analysis at multiple scales. Acadamic Press, San Diego, USAGoogle Scholar
  60. Work TT, Shorthouse DP, Spence JR, Volney JA, Langor D (2004) Stand composition and structure of the boreal mixedwood and epigaeic arthropods of the Ecosystem Management Emulating Natural Disturbance (EMEND) landbase in northwestern Alberta. Can J For Res 34:417–430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Sina Muster
    • 1
    • 2
  • Helmut Elsenbeer
    • 1
    • 3
  • Marco Conedera
    • 4
    • 5
  1. 1.Institute of GeoecologyUniversity of PotsdamPotsdamGermany
  2. 2.PotsdamGermany
  3. 3.PotsdamGermany
  4. 4.Research Unit Ecosystem BoundariesWSL Swiss Federal InstituteBellinzonaSwitzerland
  5. 5.BellinzonaSwitzerland

Personalised recommendations