Advertisement

Landscape Ecology

, Volume 22, Issue 5, pp 773–789 | Cite as

Spatial sensitivity of species habitat patterns to scenarios of land use change (Switzerland)

  • Janine Bolliger
  • Felix Kienast
  • Reto Soliva
  • Gillian Rutherford
Research article

Abstract

Long-term societal trends which include decreasing population in structurally poorer regions and changes in agricultural policies have been leading to land abandonment in various regions of Europe. One of the consequences of this development includes spontaneous forest regeneration of formerly open-land habitats with likely significant effects on plant and animal diversity. We assess potential effects of agricultural decline in Switzerland (41,000 km2) and potential impacts on the spatial distribution of seven open-land species (insects, reptile, birds) under land-use change scenarios: (1) a business-as-usual scenario that extrapolates trends observed during the last 15 years into the future, (2) a liberalisation scenario with limited regulation, and (3) a lowered agricultural production scenario fostering conservation. All scenarios were developed in collaboration with socio-economists. Results show that spontaneous reforestation is potentially minor in the lowlands since combinations of socio-economic (better accessibility), topographic (less steep slopes), and climatic factors (longer growing seasons) favour agricultural use and make land abandonment less likely. Land abandonment, spontaneous reforestation, and subsequent loss of open-land, however, are potentially pronounced in mountainous areas except where tourism is a major source of income. Here, socio-economic and natural conditions for cultivation are more difficult, leading to higher abandonment and thus reforestation likelihood. Evaluations for open-land species core habitats indicate pronounced spatial segregation of expected landscape change. Habitat losses (up to 59%) are observed throughout the country, particularly at high elevation sites in the Northern Alps. Habitat gains under the lowered agricultural production scenario range between 12 and 41% and are primarily observed for the Plateau and the Northern Alps.

Keywords

Agricultural decline Habitat suitability maps Species habitat distribution modelling Scenarios of land use change Switzerland 

Notes

Acknowledgements

Many thanks to the Centre Suisse de Cartographie de la Faune, Neuchâtel (Simon Capt, Yves Gonseth) for their expert advice and for providing the species data. We would also like to thank Thomas Niemz for kindly conducting some of the GIS analyses. This research was supported by the BioScene project funded by the European Union (EVK2-2001-00354).

References

  1. Araujo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626CrossRefGoogle Scholar
  2. Bakker J (1989) Nature management by grazing and cutting. Kluwer Academic Publishers, LondonGoogle Scholar
  3. Bätzig W (1996) Landwirtschaft im Alpenraum unverzichtbar, aber zukunftslos? Eine alpenweite Bilanz der aktuellen Probleme und der möglichen Lösungen. In: Bätzig W (ed) Landwirtschaft im Alpenraum—unverzichtbar, aber zukunftslos? Europäische Akademie Bozen, Fachbereich Alpine Umwelt, Blackwell, Wien, pp 9–11Google Scholar
  4. BFS (1979/85) Arealstatistik, Bundesamt für Statistik, Servicestelle GEOSTAT, CH-NeuchatelGoogle Scholar
  5. BFS (1992/97) Arealstatistik, Bundesamt für Statistik, Servicestelle GEOSTAT, CH-NeuchatelGoogle Scholar
  6. BLW (2003) Verordnungspaket 2007. Ausführungsbestimmungen zur Agrarpolitik 2007. Informationsveranstaltung vom 5.12.2003, Bundesamt für Landwirtschaft, BernGoogle Scholar
  7. BLW (2004) Agrarbericht 2004, Bundesamt für Landwirtschaft, BernGoogle Scholar
  8. Bolliger J, Kienast F, Zimmermann NE (2000) Risks of global warming on montane and subalpine forests in Switzerland. Region Environ Change 1:99–111CrossRefGoogle Scholar
  9. Brown DG (2003) Land use and forest cover on private parcels in the Upper Midwest USA, 1970 to 1990. Landscape Ecol 18:777–790CrossRefGoogle Scholar
  10. Copas J (1999) The effectiveness of risk scores: the logit rank plot. J Roy Stat Soc Ser C-Appl Stat 48:165–183CrossRefGoogle Scholar
  11. Deleo JM (1993) Receiver operating characteristic laboratory (ROCLAB): software for developing decision strategies that account for uncertainty. Proceedings of the first international symposium on uncertainty modelling and analysis. IEEE, Computer Society Press, College Park, MD, pp 318–325Google Scholar
  12. Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417CrossRefGoogle Scholar
  13. Dullinger S, Dirnböck T, Grabherr G (2003a) Patterns of shrub invation into high mountain grasslands of the Northern calcareous Alps, Austria. Arct Antarct Alp Res 35:434–441CrossRefGoogle Scholar
  14. Dullinger S, Dirnböck T, Greimler S, Grabherr G (2003b) A resampling approach to evaluate effects of summer farming on subalpine plant species diversity. J Veg Sci 14:243–252CrossRefGoogle Scholar
  15. Edwards TC, Cutler R, Zimmermann NE, Geiser L, Alegria J (2005) Model-based stratification for enhancing the detection of rare ecological events. Ecology 86:1081–1090Google Scholar
  16. Engler R, Guisan A, Rechsteiner L (2004) Predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274CrossRefGoogle Scholar
  17. FAT (2002) Zentrale Auswertung von Buchhaltungsdaten, TänikonGoogle Scholar
  18. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  19. Flury C (2002) Zukunftsfähige Landwirtschaft im Alpenraum, Diss. ETH Nr. 14528: ZürichGoogle Scholar
  20. Gonseth Y (1987) Verbreitungsatlas der Tagfalter der Schweiz (Leptidoptera, Rhopalocera), 6. Documenta Faunistica HelveticaGoogle Scholar
  21. Guisan A, Hofer U (2003) Predicting reptile distributions at the mesoscale: relation to climate and topography. J Biogeogr 30:1233–1243CrossRefGoogle Scholar
  22. Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1009CrossRefGoogle Scholar
  23. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  24. Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art? Ecosystems 1:143–156CrossRefGoogle Scholar
  25. Haines-Young R et al (2003) Changing landscapes, habitats and vegetation diversity across Great Britain. J Environ Manage 67:267–281PubMedCrossRefGoogle Scholar
  26. Hampe A (2004) Bioclimate envelope models: what they detect and what they hide. Global Ecol Biogeogr 13:469–476CrossRefGoogle Scholar
  27. Hannah L et al (2002) Conservation of biodiversity in a changing climate. Conserv Biol 16:264–268CrossRefGoogle Scholar
  28. Heller-Kellenberger I, Kienast F, Obrist M, Walter T (1997) Räumliche Modellierung der potentiellen faunistischen Biodiversität mit einem Expertensystem. Informationsblatt des Forschungsbereiches Landschaft 36Google Scholar
  29. Heller-Kellenberger I, Kienast F, Obrist MK, Walther TA (2004) Biodiversity hostspots—modeling potential faunistic biodiversity with a spatially explicit expert system. Swiss Federal Research Institute WSLGoogle Scholar
  30. Jenny M (1990) Populationsdynamik der Feldlerche Alauda arvensis in einer intensiv genutzten Agrarlandschaft. J Ornithol 131:241–265CrossRefGoogle Scholar
  31. Jepsen JU, Topping CJ, Odderskaer P, Andersen PN (2005) Evaluating consequences of land-use strategies on wildlife populations using multiple-species predictive scenarios. Agric Ecosyst Environ 105(4):581–594CrossRefGoogle Scholar
  32. Labaune C, Magnin F (2002) Pastoral management vs. land abandonment in Mediterranean uplands: impact on snail communities. Global Ecol Biogeogr Lett 11:237–245CrossRefGoogle Scholar
  33. Laiolo P, Dondero F, Ciliento E, Rolando A (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J Appl Ecol 41:294–304CrossRefGoogle Scholar
  34. Li H, Wu J (2004) Use and misuse of landscape indices. Landscape Ecol 19:389–399CrossRefGoogle Scholar
  35. Lindbladh M (1999) The influence of former land-use on vegetation and biodiversity in the boreo-nemoral zone of Sweden. Ecography 22:485–498CrossRefGoogle Scholar
  36. Loehle C (2004) Challenges of ecological complexity. Ecol Complexity 1:3–6CrossRefGoogle Scholar
  37. Lundström-Gilliéron C, Schläpfer R (2003) Hare abundance as an indicator for urbanisation and intensification of agriculture in Western Europe. Ecol Model 168:283–301CrossRefGoogle Scholar
  38. Lütolf M, Kienast F, Guisan A (2006) Strategies to improve species distribution model performance using occurrence data. J Appl Ecol 43:802–815CrossRefGoogle Scholar
  39. Mack G, Ferjani A (2002) Auswirkungen der Agrarpolitik (2007) Modellrechnungen für den Agrarsektor mit Hilfe des Prognosesystems SILAS, FAT, TänikonGoogle Scholar
  40. Margalef R (1994) Dynamic aspects of diversity. J Veg Sci 5:451–456CrossRefGoogle Scholar
  41. McCracken DI, Bignal EM (1998) Applying the results of ecological studies to land-use policies and practices. J Appl Ecol 35:961–967CrossRefGoogle Scholar
  42. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial pattern analysis program for categorial maps. Computer software program produced by the authors at the University of Massachusetts, Amherst, MA, USA. http://www.umass.edu/landeco/research/fragstats/fragstats.html
  43. McKenzie D, Peterson DW, Peterson DL, Thornton PE (2003) Climatic and biophysical controls on conifer species distributions in mountain forests of Washington State, USA. J Biogeogr 30:1093–1108Google Scholar
  44. Meeus J, Van Der Ploeg JD, Wijermans M (1991) Changing agricultural landscapes in Europe: continuity, deterioration or rupture? IFLA conference, Rotterdam, The NetherlandsGoogle Scholar
  45. Moreira F et al (2005) Effects of field management and landscape context on grassland wintering birds in Southern Portugal. Agricult Ecosyst Environ 109:59–74CrossRefGoogle Scholar
  46. Muller M, Spaar R, Schifferli L, Jenni L (2005) Effets of changes in farming of subalpine meadows on a grassland bird, the whinchat (Saxicola rubetra). J Ornithol 146(1):14–23CrossRefGoogle Scholar
  47. OECD (2002) Agricultural Policies in OECD countries. Monitoring and Evaluation, ParisGoogle Scholar
  48. Orlowski G (2004) Abandoned cropland as a habitat for the Whinchat Saxicola rubetra in SW Poland. Acta Ornithologica 39:59–66Google Scholar
  49. Sager J, Finger A (1992) Die Bodennutzung der Schweiz. Arealstatistik 1979/85. Kategorienkatalog. 002-8502, Bundesamt für Statistik, Bern. 191 ppGoogle Scholar
  50. Schmid H, Luder R, Naef-Daenzer B, Graf R, Zbinden N (1998) Schweizer Brutvogelatlas. Verbreitung der Brutvögel in der Schweiz und im Fürstentum Liechtenstein 1993–1996. Schweizerische Vogelwarte, SempachGoogle Scholar
  51. Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. J Biogeogr 31:1555–1568CrossRefGoogle Scholar
  52. Söderström B, Svensson B, Vessby K, Glimskär A (2001) Plants, insects, and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodivers Conserv 10:1839–1863CrossRefGoogle Scholar
  53. Soliva R, Rønningen K, Bella I, Bezak P, Cooper T, Flø BE, Marty P, Potter C. Envisioning Upland Futures: Stakeholder responses to scenarios for Europe’s mountain landscapes. J Rural Stud (accepted)Google Scholar
  54. Statistisches Jahrbuch der Schweiz (1997) 104. Verlag Neue Zürcher Zeitung, ZürichGoogle Scholar
  55. Thorens P, Nadig A (1997) Verbreitungsatlas der Orthopteren der SchweizGoogle Scholar
  56. Thuiller W, Araujo MB, Lavorel S (2003) Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J Veg Sci 14:669–680CrossRefGoogle Scholar
  57. Thuiller W, Araujo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361Google Scholar
  58. Tilman D et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284PubMedCrossRefGoogle Scholar
  59. Travis JMJ (2002) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B 270:467–473CrossRefGoogle Scholar
  60. Tucker GM, Heath MF (1994) Birds in Europe: their conservation status. Series No. 3. BirdLife International, CambridgeGoogle Scholar
  61. van der Vaart JHP (2005) Towards a new rural landscape: consequences of non-agricultural re-use of redundant farm buildings in Friesland. Landscape Urban Plan 70:143–152CrossRefGoogle Scholar
  62. Verbyla DL, Litvaitis JA (1989) Resampling methods for evaluation classification accuracy of wildlife habitat models. Environ Manage 13:783–787CrossRefGoogle Scholar
  63. Weibel U (2004) Bauern, die Biodiversität produzieren. Ornis 2:4–8Google Scholar
  64. Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Int J Remote Sensing 25:367–380Google Scholar
  65. Wu J (2004) Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecol 19:125–138CrossRefGoogle Scholar
  66. Wu J (2006) Landscape ecology, cross-disciplinarity, and sustainability science. Landscape Ecol 21:1–4CrossRefGoogle Scholar
  67. Wu J, Hobbs R (2002) Key issues and research priorities in landscape ecology: an idiosyncratic synthesis. Landscape Ecol 17:355–365CrossRefGoogle Scholar
  68. Wu J, Shen W, Sun W, Tueller PT (2002) Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecol 17:761–782CrossRefGoogle Scholar
  69. Zaniewski AE, Lehmann A, Overton JM (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecol Model 157:261–280CrossRefGoogle Scholar
  70. Zimmermann NE (2001) SimTest. http://www.wsl.ch/staff/niklaus.zimmermann/programs/fort10_1.html, WSL, BirmensdorfGoogle Scholar
  71. Zimmermann NE, Kienast F (1999) Predictive mapping of Alpine grasslands in Switzerland: species versus community approach. J Veg Sci 10:469–482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Janine Bolliger
    • 1
  • Felix Kienast
    • 1
  • Reto Soliva
    • 1
  • Gillian Rutherford
    • 1
  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland

Personalised recommendations