Landscape Ecology

, Volume 20, Issue 7, pp 799–809 | Cite as

Ascribing Ecological Meaning to Habitat Shape by Means of a Piecewise Regression Approach to Fractal Domains

  • Alessandro Ferrarini
  • Pierfrancesca Rossi
  • Orazio Rossi
Research Article


A fractal dimension (FD) indicates the ability of a set of structures to fill the Euclidean space where it is embedded. For habitat boundaries, FD is bound to a plane, thus 1 ≤ FD  ≤ 2. FD is low for simple shapes and increases as patches become more irregular. Some authors have found that FD metric delineating area-perimeter relation (APR) is best fitted through piecewise linear curves, where the slope of each line segment is one-half the FD over the corresponding scaling region. The detection of shifts in boundary FD of landscape habitats is a significant issue in ecology, since discontinuities could be an index of a substantial modification of the processes and dynamics that generate and maintain habitats. This work makes use of fractal analysis to examine the relationship between anthropogenic processes and habitat spatial patterns. It proposes two goals (1) suggesting Multivariate Adaptive Regression Splines (MARS®) as a fast and effective approach to discover shifts in APR of landscape patches; (2) explaining the substantial existence of such shifts using a set of human-related predictor variables. MARS methodology has been applied to 6 types of habitats within the Baganza stream watershed (Parma, Italy) and the discovered patterns have been correlated with anthropogenic variables that could influence APR. A standardized linear discriminant analysis (DA) has been used to predict FDs from the set of the employed predictors. DA corroborated the existence of breakpoints in APR and explained the contribute of predictor variables in determining the discovered shifts.


Area-perimeter relation Baganza stream watershed Habitat shape Italy Multivariate Adaptive Regression Splines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baskent, E.Z. 1999Controlling spatial structure of forested landscapes: a case study towards landscape managementLandscape Ecol.148397CrossRefGoogle Scholar
  2. Buechner, M. 1989Are small-scale landscape features important factors for field studies of small mammal dispersal sinks?Landscape Ecol.2191199CrossRefGoogle Scholar
  3. C.E.C. (Commission of European Community) 1991. CORINE Biotopes Manual, habitats of the European Community. A method to identify and describe consistently sites of major importance for nature conservation. EUR 12587/3, Bruxelles, Belgium. Google Scholar
  4. Chen, J., Franklin, J.F., Spies, T.A. 1992Vegetation responses to edge environments in old-growth Douglas-fir forestsEcol. Appl.2387396Google Scholar
  5. Cohen, J. 1988Statistical power analysis for the behavioural sciencesLawrence Erlbaum AssociatesNew Jersey, USAGoogle Scholar
  6. Craven, P., Wabha, G. 1979Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validationNumer. Math.31317403Google Scholar
  7. Veaux, R.D., Psichogios, D.C., Ungar, L.H. 1993aA comparison of two nonparametric estimation schemes: MARS and neural networksComp. Chem. Eng.17819837CrossRefGoogle Scholar
  8. Veaux, R.D., Gordon, A.L., Comiso, J.C., Bacherer, N.E. 1993bModelling of topographic effects on Antartic Sea Ice using multivariate adaptive regression splinesJ. Geophys. Res.98307319Google Scholar
  9. Ferrarini, A., Rossi, P., Zaccarelli, N. 2002High accurated vegetation mapping: neural networks applied to MIVIS sensor dataItal. J. Remote Sens.221322Google Scholar
  10. Forman, R.T. 1995Land Mosaics, the Ecology of Landscapes and RegionsCambridge University PressCambridgeUKGoogle Scholar
  11. Forman, R.T., Godron, M. 1986Landscape EcologyJohn Wiley & SonsNew York, USAGoogle Scholar
  12. Frank, I. E. 1995Modern nonlinear regression methodsChemometr. Intell. Lab. Syst.2719CrossRefGoogle Scholar
  13. Friedman, J.H. 1991Multivariate adaptive regression splinesAnnal Stat.191141Google Scholar
  14. Frontier, S. 1987Applications of fractal theory to ecologyLegendre, P.Legendre, L. eds. Developments in Numerical EcologySpringer-VerlagBerlin, Germany335378NATO ASI Series, vol. G14Google Scholar
  15. Grossi, L., Zurlini, G., Rossi, O. 2001Statistical detection of multiscale landscape patternsEnviron. Ecol. Stat.8253267CrossRefGoogle Scholar
  16. Hardt, R.A., Forman, R.T.T. 1989Boundary form effects on woody colonization of reclaimed surface minesEcology7012521260Google Scholar
  17. Harris, L.D., Kangas, P. 1979Designing future landscapes from principles of form and functionPilsner, G.H.Smardon, R.C. eds. Our National Landscape: Applied Techniques for Analysis and Management of the Visual ResourceUS Forest ServiceWashington D.C., USA725729General Technical Report PSW-34Google Scholar
  18. Hastings, H.M., Sugihara, G. 1993Fractals: a User's Guide for the Natural SciencesOxford University PressOxfordUKGoogle Scholar
  19. Iverson, L.R. 1989Land use changes in Illinois, USA: the influence of landscape attributes on current and historic land useLandscape Ecol.24561CrossRefGoogle Scholar
  20. Kuhnert, P.M., Do, K., McClure, R. 2000Combining non-parametric models with logistic regression: an application to motor vehicle injury dataComput. Stat. Data Anal.34371386CrossRefGoogle Scholar
  21. Krummel, J.R., Gardner, R.H., Sugihara, G., O’Neill, R.V. 1987Landscape patterns in a disturbed environmentOikos48321324Google Scholar
  22. Lewis, P.A.W., Stevens, J.G. 1991Nonlinear modelling of time series using multivariate adaptive regression splines (MARS)J. Am. Stat. Assoc.86864877Google Scholar
  23. Liu, A.J., Cameron, G.N. 2001Analysis of landscape patterns in coastal wetlands of Galveston Bay, Texas (USA)Landscape Ecol.16581595CrossRefGoogle Scholar
  24. Mandelbrot, B.B. 1982The Fractal Geometry of Nature W.H. FreemanSan FranciscoUSAGoogle Scholar
  25. Miller, J.N., Brooks, R.P., Croonquist, M.J. 1997Effects of landscape patterns on biotic communitiesLandscape Ecol.12137153CrossRefGoogle Scholar
  26. Mladeno D.J. and DeZonia B. 2001. Apack 2.17 Analysis Software. User’s guide, pp. 52.Google Scholar
  27. O'9Neill, R.V., Krummel, J.R., Gardner, R.H., Sugihara, G., Jackson, B., DeAngelis, D.L., Milne, B.T., Turner, M.G., Zygmunt, B., Christensen, S.W., Dale, V.H., Graham, R.L. 1988Indices of landscape patternLandscape Ecol.1153162CrossRefGoogle Scholar
  28. Rossi, O., Zurlini, G. 1993Primi elementi conoscitivi essenziali per la realizzazione della Carta della Natura (Leggen. 394 del 6/12/1991)Bull. Ital. Ecol. Soc.144656Google Scholar
  29. Rossi, P., Ferrarini, A., Zaccarelli, N. 2001CORINE habitats recognition inside Baganza stream watershed (ParmaItaly) through MIVIS sensor dataItal. J. Remote Sens.204148Google Scholar
  30. Rossi, P. 1999Analisi della diversitá vegetazionale in Val Baganza mediante la classificazione CORINE BiotopesUniversity of ParmaParmaItaly250ThesisGoogle Scholar
  31. Schonewald-Cox, C.M., Bayless, J.W. 1986The boundary model: a geographic analysis of design and conservation of nature reservesBiol. Conserv.38305322CrossRefGoogle Scholar
  32. Sekulic, S., Kowalski, B.R. 1992MARS: a tutorial J. Chemometr.6199216CrossRefGoogle Scholar
  33. Sugihara, G., May, R.M. 1990Applications of fractals in ecologyTrend. Res. Ecol. Evol.57986CrossRefGoogle Scholar
  34. Steinberg, D., Bernstein, B., Colla, P., Martin, K. 1999MARS User GuideSalford SystemsSan Diego, CAGoogle Scholar
  35. Thompson, D.W. 1961On Growth and FormCambridge University PressCambridgeUKGoogle Scholar
  36. Turner, M.G., Ruscher, C.L. 1988Changes in the spatial patterns of lands use in GeorgiaLandscape Ecol.1241251CrossRefGoogle Scholar
  37. Usher, M.B. 1991Habitat structure and the design of nature reservesBell, S.S.McCoy, E.D.Mushinsky, H.R. eds. Habitat Structure – the Physical Arrangement of Objects in SpaceChapman and HallLondon373391Google Scholar
  38. Wiens, J.A., Crawford, C.S., Gosz, R. 1985Boundary dynamics: a conceptual framework for studying landscape ecosystemsOikos45421427Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Alessandro Ferrarini
    • 1
  • Pierfrancesca Rossi
    • 1
  • Orazio Rossi
    • 1
  1. 1.Department of Environmental ScienceUniversity of ParmaItaly

Personalised recommendations