Kinetics and Catalysis

, Volume 46, Issue 6, pp 853–860 | Cite as

Partially Hydrolyzed Alkylaluminums as the Active Heterogenized Components of Metallocene Catalysts

  • L. A. Novokshonova
  • N. Yu. Kovaleva
  • T. M. Ushakova
  • I. N. Meshkova
  • V. G. Krasheninnikov
  • T. A. Ladygina
  • I. O. Leipunskii
  • A. N. Zhigach
  • M. L. Kuskov


The heterogenized reaction products of the partial hydrolysis of the organoaluminum compounds AlMe3 and Al(i-Bu)3 with water as a constituent of highly hydrated supports, zeolite (ZSM-5-H2O) and montmorillonite (MMT-H2O), have been synthesized. The thermal degradation of the resulting heterogenized methylalumoxane compound and methylalumoxane (MAO) in a solid state is studied by temperature-programmed desorption with the mass-spectrometric analysis of liberated gaseous products, and the structural identity of the above compounds is found. Alkylalumoxanes prepared immediately on the surface of a support form heterogenized complexes with the metallocenes Cp2ZrCl2 and Et(Ind)2ZrCl2. These heterogenized complexes exhibit high activity in the reactions of ethylene and propylene polymerization. For this reason, MAO can be replaced by AlMe3 or Al(i-Bu)3 and the additional introduction of MAO or another alkylaluminum for zirconocene activation is unnecessary. It has been found that, upon the immobilization of commercial MAO on dehydrated SiO2, the MAO molecule loses a portion of its most reactive methyl groups and, as a result of this, becomes incapable of activating metallocenes.


Zeolite Immobilization Montmorillonite Thermal Degradation Partial Hydrolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chien, J.C.W. and He, D., J. Polym. Sci., Part A: Polym. Chem., 1991, vol. 29, p. 1603.Google Scholar
  2. 2.
    Soga, K. and Kaminaka, M., Makromol. Chem., Rapid Commun., 1992, vol. 13, p. 221.CrossRefGoogle Scholar
  3. 3.
    Collins, S., Kelly, W.M., and Holden, D.A., Macromolecules, 1992, vol. 25, p. 1780.Google Scholar
  4. 4.
    Kaminsky, W. and Renner, F., Makromol. Chem., Rapid Commun., 1993, vol. 14, p. 239.CrossRefGoogle Scholar
  5. 5.
    Sacchi, M.C., Zucchi, D., Tritto, I., and Locatelli, P., Macromol. Rapid Commun., 1995, vol. 16, p. 581.CrossRefGoogle Scholar
  6. 6.
    Tait, P.J.T., Abozeid, A.L., and Paghaleh, A.S., “Metallocenes '95,” Int. Congr. on Metallocene Polymers, Brussels, 1995, p. 89.Google Scholar
  7. 7.
    Lee, D., Shin Sang, Macromol. Symp., 1995, vol. 97, p. 195.Google Scholar
  8. 8.
    Woo, S.I., Ko, Y.S., and Han, T.K., Macromol. Rapid Commun., 1995, vol. 16, p. 489.CrossRefGoogle Scholar
  9. 9.
    Michelotti, M., Arribas, G., Bronco, S., and Altomare, A., J. Mol. Catal. A, 2000, vol. 252, p. 167.Google Scholar
  10. 10.
    Ciardelli, F., Altomare, A., and Conti, G., Macromol. Symp., 1994, vol. 80, p. 29.Google Scholar
  11. 11.
    Marques, M.F.V. and Coutinho, F.M.B., 36th Int. Symp. on Macromolecules, Seoul, 1996.Google Scholar
  12. 12.
    Giannnetti, E., Nicolletti, M., and Mazzochi, R., J. Polym. Sci., Part A: Polym. Chem., 1985, vol. 23, p. 2117.Google Scholar
  13. 13.
    Soga, K. and Kaminaka, M., Makromol. Chem., 1993, vol. 194, p. 1745.Google Scholar
  14. 14.
    Panchenko, V.N., Semikolenova, N.V., Danilova, I.G., et al., J. Mol. Catal. A, 1999, vol. 142, p. 27.Google Scholar
  15. 15.
    Ferreira, M.L., Belelli, P.G., Juan, A., and Damiani, D.E., Macromol. Chem. Phys., 2000, vol. 201, p. 2531.CrossRefGoogle Scholar
  16. 16.
    Kaminsky, W., US Patent 4431788, Chem. Abstr., 1981, vol. 95, no.151475.Google Scholar
  17. 17.
    Chang, M., US Patent 56292533, Chem. Abstr., 1997, vol. 127, no.34630.Google Scholar
  18. 18.
    Tsutsui, T. and Ueda, T., US Patent 5234878, Chem. Abstr., 1991, vol. 115, no.233130.Google Scholar
  19. 19.
    Suga, Y., Maruyama, Y., Isobe, E., et al., US Patent 5308811, Chem. Abstr., 1993, vol. 118, no.192487.Google Scholar
  20. 20.
    Meshkova, I.N., Ushakova, T.M., Ladygina, T.A., et al., Polym. Bull., 2000, vol. 44, p. 461.CrossRefGoogle Scholar
  21. 21.
    Novokshonova, L.A., Meshkova, I.N., Kovaleva, N.Yu., et al., Future Technology for Polyolefin and Olefin Polymerization Catalysis, Terano, M. and Shiono, T., Eds., Tokyo, 2002, p. 162.Google Scholar
  22. 22.
    Meshkova, I.N., Ladygina, T.A., Ushakova, T.M., et al., Stud. Surf. Sci. Catal., 2002, p. 691.Google Scholar
  23. 23.
    Meshkova, I.N., Ladygina, T.A., Ushakova, T.M., and Novokshonova, L.A., Vysokomol. Soedin., Ser. A, 2002, vol. 44, no.8, p. 1310.Google Scholar
  24. 24.
    Kovaleva, N.Yu., Ushakova, T.M., Gavrilov, Yu.A., et al., Polimery, 2001, vol. 46, no.4, p. 257.Google Scholar
  25. 25.
    USSR Inventor's Certificate no. 1066193, Byull. Izobret., 1985, no. 11, p. 199.Google Scholar
  26. 26.
    Ushakova, T.M., Meshkova, I.N., and D'yachkovskii, F.S., 31st IUPAC Macromolecular Symp., Merseburg, GDR, 1987, p. 100.Google Scholar
  27. 27.
    Gul'tseva, N.M., Ushakova, T.M., Krasheninnikov, V.G., et al., Polimery, 1989, vol. 34, p. 247.Google Scholar
  28. 28.
    Novokshonova, L.A., Kovaleva, N.Yu., Gavrilov, Yu.A., Krasheninnikov, V.G., et al., Polym. Bull., 1997, vol. 39, p. 59.CrossRefGoogle Scholar
  29. 29.
    Jigatch, A.N., Leipunsky, I.O., Kuskov, M.L., and Verzhbitskaya, T.M., Rapid Commun. Mass Spectrom., 1999, vol. 13, p. 2109.CrossRefGoogle Scholar
  30. 30.
    Sinn, H., Hamburg makromoleculares Colloquium, Hamburg, 1994.Google Scholar
  31. 31.
    Mason, M.R., Smiths, J.M., Bott, S.G., and Barron, A.R., J. Am. Chem. Soc., 1993, vol. 115, p. 4971.CrossRefGoogle Scholar
  32. 32.
    Cornu, A. and Massot, R., Compilation of Mass-Spectral Data, Press Universitaires de France, 1996.Google Scholar
  33. 33.
    Soga, K. and Kaminaka, M., Makromol. Chem., Rapid Commun., 1992, vol. 13, p. 221.CrossRefGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2006

Authors and Affiliations

  • L. A. Novokshonova
    • 1
  • N. Yu. Kovaleva
    • 1
  • T. M. Ushakova
    • 1
  • I. N. Meshkova
    • 1
  • V. G. Krasheninnikov
    • 1
  • T. A. Ladygina
    • 1
  • I. O. Leipunskii
    • 2
  • A. N. Zhigach
    • 2
  • M. L. Kuskov
    • 2
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations