Advertisement

Kinetics and Catalysis

, Volume 46, Issue 6, pp 789–799 | Cite as

Inhibition of the Combustion and Detonation of Hydrogen-Air Mixtures behind the Shock Front

  • V. V. Azatyan
  • V. A. Pavlov
  • O. P. Shatalov
Article

Abstract

The chain avalanche plays the determining role in all regimes of combustion in the hydrogen-oxygen system in the initiating shock wave near atmospheric pressure in a wide range of high initial temperatures. The characteristics of combustion and detonation can be effectively controlled by varying the rates of the competing chain-branching and chain-termination reactions with the use of small amounts of admixtures. The reactivity of the combustible mixture is correlated with the chemical structure of the admixture. This correlation is manifested in the fact that changing a single functional group in the admixture molecule produces a strong effect on the kinetics, macrokinetics, and gas dynamics of the overall process.

Keywords

Combustion Physical Chemistry Catalysis Shock Wave Initial Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Semenov, N.N., O nekotorykh problemakh khimicheskoi kinetiki i reaktsionnoi sposobnosti (Some Problems of Chemical Kinetics and Reactivity), Moscow: Akad. Nauk SSSR, 1958.Google Scholar
  2. 2.
    Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.Google Scholar
  3. 3.
    Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Sovetskaya Entsiklopediya, 1984, vol. 1, p. 594.Google Scholar
  4. 4.
    Lewis, B. and von Elbe, G., Combustion, Flames, and Explosions of Gases, New York: Academic, 1961.Google Scholar
  5. 5.
    Lewis, B., and von Elbe, G., Combustion, Flames, and Explosions of Gases, Orlando: Academic, 1987, 2nd ed.Google Scholar
  6. 6.
    Schwenz, R.W., Gilbert, J.V., and Coombe, R.D., Chem. Phys. Lett., 1993, vol. 207, p. 5 26.CrossRefGoogle Scholar
  7. 7.
    Korzhavin, A.A., Bunev, V.A., Babkin, V.S., et al., in Science to Applications, Moscow: ENAS, 1999, p. 255.Google Scholar
  8. 8.
    Longning, H.E., Combust. Flame, 1997, vol. 108, no.4, p. 401.Google Scholar
  9. 9.
    Zel'dovich, Ya.B., Barenblatt, G.B., Makhviladze, G.M., and Librovich, V.N., Matematicheskaya teoriya goreniya (Mathematical Theory of Combustion), Moscow: Nauka, 1981.Google Scholar
  10. 10.
    Fizicheskaya entsiklopediya (Encyclopedia of Physics), Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1, p. 267.Google Scholar
  11. 11.
    Semiokhin, I.A., Strakhov, B.V., and Ostov, A.I., Kurs khimicheskoi kinetiki (Chemical Kinetics), Moscow: Mosk. Gos. Univ., 1995.Google Scholar
  12. 12.
    Denisov, E.T., Sarkisov, O.M., and Likhtenshtein, G.I., Khimicheskaya kinetika (Chemical Kinetics), Moscow: Khimiya, 2000.Google Scholar
  13. 13.
    Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Rossiiskaya Entsiklopediya, 1998, vol. 5, p. 345.Google Scholar
  14. 14.
    Maas, U. and Warnatz, J., Combust. Flame, 1988, vol. 74, no.1, p. 53, 102.CrossRefGoogle Scholar
  15. 15.
    Gontkovskaya, V.T., Gordopolova, I.S., and Ozerkovskaya, N.I., Fiz. Goreniya Vzryva, 1988, vol. 24, no.1, p. 53.Google Scholar
  16. 16.
    Warnatz, J., Maas, U., and Dibble, R., Combustion: Physical and Chemical Fundamentals. Modelimg and Simulation. Experiments. Pollutant Formation, Berlin: Springer, 1996.Google Scholar
  17. 17.
    Frolov, S.M., Basevich, V.Ya., and Belyaev, A.A., Khim. Fiz., 1999, vol. 18, no.9, p. 54.Google Scholar
  18. 18.
    Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Rossiiskaya. Entsiklopediya, 1984, vol. 1, p. 326.Google Scholar
  19. 19.
    Novozhilov, B.V., Khim. Fiz., 1995, vol. 14, p. 35.Google Scholar
  20. 20.
    Azatyan, V.V., Kinet. Katal., 1977, vol. 18, no.2, p. 272.Google Scholar
  21. 21.
    Azatyan, V.V., Kinet. Katal., 1996, vol. 37, no.4, p. 512.Google Scholar
  22. 22.
    Azatyan, V.V., Kinet. Katal., 1999, vol. 40, no.6, p. 812.Google Scholar
  23. 23.
    Azatyan, V.V. and Shavard, A.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1977, p. 2460.Google Scholar
  24. 24.
    Azatyan, V.V. and Merzhanov, A.G., in Khimicheskaya fizika na poroge XXI veka (Chemical Physics at the Turn of the 21st Century), Moscow: Nauka, 1996, p. 74.Google Scholar
  25. 25.
    Azatyan, V.V., Shebeko, Yu.N., Nabvtsenya, V.Yu., et al., Proc. Third Asia-Oceania Symp., Singapore, 1998, p. 131.Google Scholar
  26. 26.
    Azatyan, V.V., Vedeshkin, G.K., Iskra, V.A., and Aivazyan, R.G., Proc. 12th World Hydrogen Energy Conf., Buenos Aires, 1998, p. 1965.Google Scholar
  27. 27.
    Azatyan, V.V., Vagner, G.G., and Vedeshkin, G.K., Zh. Fiz. Khim., 2004, vol. 78, p. 1044.Google Scholar
  28. 28.
    Azatyan, V.V., Baklanov, D.I., Gvozdeva, L.G., et al., Dokl. Akad. Nauk, 2001, vol. 378, no.1, p. 55.Google Scholar
  29. 29.
    Pozharo-vzryvobezopasnost' veshchestv i materialov i sredstva pozharotusheniya. Spravochnik (Fire and Explosion Safety of Substances and Materials and Fire-Extinguishing Means: A Handbook), Korol'chenko, A.Ya. and Baratov, A.N., Eds., Moscow: Khimiya, 1990, vol. 1.Google Scholar
  30. 30.
    Tzang, W., Ind. Eng. Chem., 1992, vol. 31, p. 3.Google Scholar
  31. 31.
    Peters, N. and Rogg, B., Reduced Kinetic Mechanisms for Applications in Combustion Systems, Heidelberg: Springer, 1993.Google Scholar
  32. 32.
    German, T.C. and Muller, W.H., J. Phys. Chem., 1997, vol. 101, p. 6358.Google Scholar
  33. 33.
    Baulch, D.L., Cobos, C.J., Cox, R.A., et al., Combust. Flame, 1994, vol. 98, no.1, p. 59.CrossRefGoogle Scholar
  34. 34.
    Oganesyan, K.T. and Nalbandyan, A.B., Izv. Akad. Nauk Arm. SSR, 1965, vol. 18, no.2, p. 237.Google Scholar
  35. 35.
    Combustion Chemistry, Gardiner, W., Ed., New York: Springer, 1984.Google Scholar
  36. 36.
    Fish, A., Proc. Int. Oxidation Symp., Stanford: Stanford Res. Inst., 1967, vol. 1, p. 431.Google Scholar
  37. 37.
    Lordkipanidze, D.N., Azatyan, V.V., Dzotsenidze, Z.G., and Museridze, M.D., Fiz. Goreniya Vzryva, 1979, vol. 15, no.1, p. 73.Google Scholar
  38. 38.
    Denisov, E.T. and Azatyan, V.V., Inhibition of Chain Reactions, London: Gordon & Breach, 2000.Google Scholar
  39. 39.
    Azatyan, V.V., Gaganidze, K.I., Kolesnikov, S.A., and Trubnikov, G.R., Kinet. Katal., 1982, vol. 22, no.1, p. 244.Google Scholar
  40. 40.
    Azatyan, V.V., Kalachev, V.I., and Masalova, V.V., Zh. Fiz. Khim., 2003, vol. 77, pp. 1432.Google Scholar
  41. 41.
    Gel'fand, B.E., Fiz. Goreniya Vzryva, 2002, vol. 38, no.5, p. 101.Google Scholar
  42. 42.
    Azatyan, V.V., Merzhanov, A.G., Kalachev, V.I., et al., Fiz. Goreniya Vzryva, 2005, vol. 41, no.1, p. 3.Google Scholar
  43. 43.
    Sokolik, A.S., Samovosplamenenie, plamya i detonatsiya v gazakh (Spontaneous Ignition, Flame, and Detonation in Gases), Moscow: Akad. Nauk SSSR, 1960.Google Scholar
  44. 44.
    Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Sovetskaya Entsiklopediya, 1984, vol. 1, p. 326.Google Scholar
  45. 45.
    Semenov, N.N., Razvitie teorii tsepnykh reaktsii i teplovogo vzryva (Development of the Theory of Chain Reactions and Thermal Explosion), Moscow: Mysl, 1969.Google Scholar
  46. 46.
    Denisov, E.T., Kinetika gomogennykh khimicheskikh reaktsii (Kinetics of Homogeneous Chemical Reactions), Moscow: Vysshaya Shkola, 1988.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2006

Authors and Affiliations

  • V. V. Azatyan
    • 1
  • V. A. Pavlov
    • 2
  • O. P. Shatalov
    • 2
  1. 1.Institute of Structural Macrokinetics and Materials Research ProblemsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations