Advertisement

Kinetics and Catalysis

, Volume 46, Issue 5, pp 641–659 | Cite as

Physicochemical Principles of the Synthesis of Porous Composite Materials through the Hydrothermal Oxidation of Aluminum Powder

  • S. F. Tikhov
  • V. E. Romanenkov
  • V. A. Sadykov
  • V. N. Parmon
  • A. I. Rat'ko
Article

Abstract

The main versions of the synthesis of a new class of porous cermet materials such as Al2O3/Al, MOx/Al2O3/Al, and M1/MOx/Al2O3/Al and ceramic composites on their basis were analyzed. These ceramic composites were prepared through the stage of the hydrothermal oxidation of aluminum powder and were designed for catalytic and adsorption processes. Equations that express the dependence of the apparent density of the resulting composite on the density of the initial powder mixture, on the concentration of the powdered active component, and on the conversion of aluminum are given. It was found that the formal kinetics of aluminum oxidation with water at 100°C can be described by the Kolmogorov-Erofeev equation. The results were compared with data obtained in an autoclave at higher temperatures and steam pressures. The synthesis parameters that affect the total pore volume and the specific surface area of aluminum oxide obtained from aluminum powder were determined. For the case of the transfer of soluble components from an autoclave to a press mold, the molar coefficients of this process were calculated. The texture peculiarities of composites were analyzed. The texture exhibited a polymodal character with developed micropore, mesopore, and ultramacropore structures, which are responsible for the high permeability of granulated composites. Factors affecting the mechanical properties of metal ceramics were studied. The catalysts and products of composite materials were exemplified.

Keywords

Pore Volume Total Pore Volume Ceramic Composite Aluminum Powder Steam Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Andreeva, V.A., Osnovy fiziko-khimii i tekhnologii kompozitov (Composites: Fundamentals of Physical Chemistry and Technology), Moscow: IRZhR, 2001.Google Scholar
  2. 2.
    Sungkono, I., Kameyama, H., and Koya, T., Appl. Surf. Sci., 1997, vol. 121/122, p. 425.CrossRefGoogle Scholar
  3. 3.
    Patermarakis, G. and Nicopoulos, N., J. Catal., 1999, vol. 187, p. 311.CrossRefGoogle Scholar
  4. 4.
    Burgos, N., Paulis, M., Antxustegi, M.M., et al., Appl. Catal., vol. 38, p. 251.Google Scholar
  5. 5.
    Varghese, O.K., Gong, D., Paulose, M., et al., J. Mater. Res., 2002, vol. 17, no.5, p. 1162.Google Scholar
  6. 6.
    Solntsev, K.A., Shustorovich, E.M., Chernyavskii, A.S., et al., Dokl. Akad. Nauk, 2002, vol. 385, no.3, p. 372.Google Scholar
  7. 7.
    Anan'in, V.N., Belyaev, V.V., Parmon, V.N., et al., Tezisy dokladov XIV Mendeleevskogo s”ezda po obshchei i prikladnoi khimii (Proc. XIV Mendeleev Cong. on General and Applied Chemistry), Minsk: Navuka i Tekhnika, 1993.Google Scholar
  8. 8.
    Yakerson, V.I., Dykh, Zh.L., Subbotin, A.N., et al., Kinet. Katal., 1995, vol. 356, no.6, p. 918.Google Scholar
  9. 9.
    Poristye pronitsaemye materialy (Porous Permeable Materials) Belov, S.V., Ed., Moscow: Metallurgiya, 1987, p. 175.Google Scholar
  10. 10.
    Tikhov, S.F., Fenelonov, V.B., Sadykov, V.A., et al., Kinet. Katal., 2000, vol. 41, no.6, p. 907.Google Scholar
  11. 11.
    Tikhov, S.F., Potapova, Yu.V., Fenelonov, V.B., et al., Kinet. Katal., 2004, vol. 45, no.4, p. 642.Google Scholar
  12. 12.
    Rabinovich, V.A. and Khavin, Z.Ya., Kratkii khimicheskii spravochnik (Concise Handbook of Chemistry), Leningrad: Khimiya, 1978.Google Scholar
  13. 13.
    Spravochnik khimika (Chemist's Handbook), Leningrad: Khimiya, 1968, vol. 2.Google Scholar
  14. 14.
    Fenelonov, V.B., Kinet. Katal., 1994, vol. 35, no.5, p. 795.Google Scholar
  15. 15.
    Fenelonov, V.B., Extended Abstract of Doctoral (Chem.) Dissertation, Novosibirsk: Inst. of Catalysis, 1987.Google Scholar
  16. 16.
    Peronius, N. and Sweeting, T.J., Powder Technol., 1985, vol. 42, p. 113.Google Scholar
  17. 17.
    Shkrabina, R.A., Extended Abstract of Doctoral (Chem.) Dissertation, Novosibirsk: Inst. of Catalysis, 1997.Google Scholar
  18. 18.
    Riekert, L. and Ulrich, R., Chem.-Ing.-Tech., 1984, vol. 56, no.2, p. 149.CrossRefGoogle Scholar
  19. 19.
    Zhilinskii, V.V. and Lokenbakh, A.K., Latv. PSR Zinat. Akad. Vestis. Kim. Ser., 1988, no. 5, p. 622.Google Scholar
  20. 20.
    Zhilinskii, V.V., Lokenbakh, A.K., and Lepin, L.K., Latv. PSR Zinat. Akad. Vestis. Kim. Ser., 1986, no. 2, p. 151.Google Scholar
  21. 21.
    Zhilinskii, V.V., Shcherbakov, V.K., Lokenbakh, A.K., et al., in Sovershenstvovanie protsessov lit'ya i obrabotki alyuminiya i proizvodstva kremniya (Improvement of Aluminum Casting and Machining and Silicon Manufacture Processes), Leningrad: VAMI, 1985, p. 45.Google Scholar
  22. 22.
    Rat'ko, A.I., Romanenkov, V.E., and Krupen'kina, Zh.V., Dokl. Nats. Akad. Nauk Belarusi, 2003, vol. 47, no.4, p. 55.Google Scholar
  23. 23.
    Rat'ko, A.I., Romanenkov, V.E., Bolotnikova, E.V., et al., Dokl. Nats. Akad. Nauk Belarusi, 2003, vol. 47, no.5, p. 62.Google Scholar
  24. 24.
    Erofeev, B.V., Dokl. Akad. Nauk SSSR, 1946, vol. 52, no.6, p. 515.Google Scholar
  25. 25.
    Panchenkov, G.M. and Lebedev, V.P., Khimicheskaya kinetika i kataliz (Chemical Kinetics and Catalysis), Moscow: Khimiya, 1985.Google Scholar
  26. 26.
    Vityaz', P.A., Sheleg, V.K., Anan'in, V.N., et al., Dokl. Akad. Nauk BSSR, Ser. Khim., 1986, vol. 30, no.3, p. 240.Google Scholar
  27. 27.
    Tikhov, S.F., Potapova, Yu.V., Fenelonov, V.B., et al., Kinet. Katal., 2003, vol. 44, no.2, p. 322.Google Scholar
  28. 28.
    Tikhov, S.F., Zaikovskii, V.I., Fenelonov, V.B., et al., Kinet. Katal., 2000, vol. 41, no.6, p. 916.Google Scholar
  29. 29.
    Anan'in, V.N., Belyaev, V.V., Romanenkov, V.E., et al., Vestsi Akad. Navuk BSSR, 1988, no. 5, p. 17.Google Scholar
  30. 30.
    Lur'e, B.A., Chernyshev, A.N., Perova, N.N., et al., Kinet. Katal., 1976, vol. 17, no.6, p. 1453.Google Scholar
  31. 31.
    Lyashko, A.P., Medvidinskii, A.A., Savel'ev, G.G., et al., Kinet. Katal., 1990, vol. 31, no.4, p. 967.Google Scholar
  32. 32.
    Rat'ko, A.I., Romanenkov, V.E., Bolotnikova, E.V., and Krupen'kina, Zh.V., Kinet. Katal., 2004, vol. 45, no.2, p. 299.Google Scholar
  33. 33.
    Tikhov, S.F., Potapova, Yu.V., Sadykov, V.A., et al., Mater. Res. Innov., 2005 (in press).Google Scholar
  34. 34.
    Rat'ko, A.I., Romanenkov, V.E., Bolotnikova, E.V., et al., Kinet. Katal., 2004, vol. 44, no.1, p. 169.Google Scholar
  35. 35.
    Tikhov, S.F., Sadykov, V.A., Potapova, Yu.V., et al., Stud. Surf. Sci. Catal., 1998, vol. 118, p. 797.Google Scholar
  36. 36.
    Zaporina, N.A. and Lokenbakh, A.K., Latv. PSR Zinat. Akad. Vestis. Kim. Ser., 1987, no. 6, p. 696.Google Scholar
  37. 37.
    Rat'ko, A.I., Romanenkov, V.E., Bolotnikova, E.V., et al., Vestsi Nats. Akad. Navuk Belarusi, Ser. Kolloidn. Khim., 2003, no. 3, p. 5.Google Scholar
  38. 38.
    Ivanova, A.S., Skripchenko, E.V., Moroz, E.M., et al., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1989, no. 6, p. 116.Google Scholar
  39. 39.
    Koryabkina, N.A., Ismagilov, Z.R., Shkrabina, R.A, et al., Kinet. Katal., 1991, vol. 32, no.4, p. 1013.Google Scholar
  40. 40.
    Koryabkina, N.A., Litvak, G.S., Shkrabina, R.A., et al., Kinet. Katal., 1993, vol. 34, no.5, p. 913.Google Scholar
  41. 41.
    Koryabkina, N.A., Shkrabina, R.A., Ushakov, V.A., et al., Kinet. Katal., 1997, vol. 38, no.1, p. 128.Google Scholar
  42. 42.
    Segalova, E.E., Tulovskaya, Z.D., Brutskus, T.K., et al., Zh. Prikl. Khim., 1964, vol. 37, no.6, p. 1227.Google Scholar
  43. 43.
    Pavlova, S., Tikhov, S., Sadykov, V., et al., Stud. Surf. Sci. Catal, 2004, vol. 147, p. 223.Google Scholar
  44. 44.
    Tikhov, S.F., Fenelonov, V.B., Zaikovskii, V.I., et al., Microporous Mesoporous Mater., 1999, vol. 33, p. 137.Google Scholar
  45. 45.
    Zagrafskaya, R.V., Karnaukhov, A.P., and Fenelonov, V.B., Kinet. Katal., 1979, vol. 20, no.2, p. 465.Google Scholar
  46. 46.
    Leonov, A.N., Smorygo, O.L., Romashko, A.N., et al., Kinet. Katal., 1998, vol. 39, no.5, p. 691.Google Scholar
  47. 47.
    Buyanov, R.A. and Krivoruchko, O.P., Kinet. Katal., 1979, no. 3, p. 765.Google Scholar
  48. 48.
    Rat'ko, A.I., Romanenkov, V.E., Bolotnikova, E.V., et al., Kinet. Katal., 2004, vol. 44, no.1, p. 162.Google Scholar
  49. 49.
    Panova, N.B., Probl. Upr. Teor. Inf., 2001, no. 4, p. 74.Google Scholar
  50. 50.
    Leshko, N.B., Probl. Upr. Teor. Inf., 2001, no. 6, p. 26.Google Scholar
  51. 51.
    Matus, P.P., Matematicheskoe modelirovanie v biologii i meditsine (Mathematical Modeling in Biology and Medicine), Minsk, 1997.Google Scholar
  52. 52.
    Kafarov, V.V., Metody kibernetiki v khimii i khimicheskoi tekhnologii (Cybernetic Methods in Chemistry and Chemical Engineering), Moscow: Khimiya, 1985.Google Scholar
  53. 53.
    Kuznetsova, L.I., Ananin, V.N., Pashis, A.V., and Belyaev, V.V., React. Kinet. Catal. Lett., 1991, vol. 43, no.2, p. 545.Google Scholar
  54. 54.
    Tikhov, S.F., Sadykov, V.A., Salanov, A.N., et al., Mater. Res. Soc. Symp. Proc., 1998, vol. 497, p. 121.Google Scholar
  55. 55.
    Tikhov, S.F., Sadykov, V.A., Bobrova, I.I., et al., Stud. Surf. Sci. Catal., 2001, vol. 139, p. 105.Google Scholar
  56. 56.
    Ismagilov, Z.R., Podyacheva, O.Yu., Pushkarev, V.V., et al., Stud. Surf. Sci. Catal., 2000, vol. 130, p. 2759.Google Scholar
  57. 57.
    Tikhov, S.F., Kurkin, V.I., Sadykov, V.A., et al., Stud. Surf. Sci. Catal., 2004, vol. 147, p. 37342.Google Scholar
  58. 58.
    Kuznetsova, L.I., Zaikovskii, V.I., Ziborov, A.V., et al., React. Kinet. Catal. Lett., 1991, vol. 43, no.2, p. 553.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2005

Authors and Affiliations

  • S. F. Tikhov
    • 1
  • V. E. Romanenkov
    • 2
  • V. A. Sadykov
    • 1
  • V. N. Parmon
    • 1
  • A. I. Rat'ko
    • 3
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute for the Advanced Training and Retraining of Personnel in New Areas of the Development of Engineering, Technology, and EconomicsBelarussian State Technical UniversityMinskBelarus
  3. 3.Institute of General and Inorganic ChemistryBelarussian Academy of SciencesMinskBelarus

Personalised recommendations