Kinetics and Catalysis

, Volume 46, Issue 4, pp 555–564 | Cite as

In situ IR Spectroscopic and XPS Study of Surface Complexes and Their Transformations during Ammonia Oxidation to Nitrous Oxide over an Mn-Bi-O/α-Al2O3 Catalyst

  • E. M. Slavinskaya
  • Yu. A. Chesalov
  • A. I. Boronin
  • I. A. Polukhina
  • A. S. Noskov


Surface complexes resulting from the interaction between ammonia and a manganese-bismuth oxide catalyst were studied by IR spectroscopy and XPS. At the first stage, ammonia reacts with the catalyst to form the surface complexes [NH] and [NH2] via abstraction of hydrogen atoms even at room temperature. Bringing the catalyst into contact with flowing air at room temperature or with helium under heating results in further hydrogen abstraction and simultaneous formation of [N] from [NH2] and [NH]. The nitrogen atoms are localized on both reduced (Mn2+) and oxidized (Mnδ+, 2 < δ < 3) sites. Atomic nitrogen is highly mobile and reacts readily with the weakly bound oxygen of the oxidized (Mnδ+-N) active site. The nitrogen atoms localized on oxidized sites play the key role in N2O formation. Nitrous oxide is readily formed through the interaction between two Mnδ+-N species. N2 molecules result from the recombination of nitrogen atoms localized on reduced (Mn2+-N) sites.


Hydrogen Ammonia Recombination Catalysis Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrussov, L., Angew. Chem., 1926, vol. 39, p. 321.Google Scholar
  2. 2.
    Bodenstein, M., Z. Electrochem., 1935, vol. 41, p. 466.Google Scholar
  3. 3.
    Raschig, F., Angew. Chem., 1927, vol. 40, p. 1183.Google Scholar
  4. 4.
    Zavadzki, I., Disc. Faraday Soc., 1950, no. 8, p. 140.Google Scholar
  5. 5.
    Fogel, Ya.M., Nadykto, B.T., Rybalko, V.F., Shvachko, V.I., and Korobchanskaya, I.E., Kinet. Catal., 1964, vol. 8, p. 431.Google Scholar
  6. 6.
    Il’chenko, N.I. and Golodets, G.J., J. Catal., 1975, vol. 39, no.11, p. 57.CrossRefGoogle Scholar
  7. 7.
    Gorodetskii, V.V., Smirnov, M.Yu., and Cholach, A.R., Proc. X Int. Cong. on Catalysis, Budapest: Akad. Kiado, 1993, vol. B, p. 1587.Google Scholar
  8. 8.
    Mieher, W.D. and Ho, W., Surf. Sci., 1995, vol. 322, p. 151.CrossRefGoogle Scholar
  9. 9.
    Selwyn, G.S., Fujimoto, G.T., and Lin, M.C., J. Phys. Chem., 1982, vol. 86, p. 760.Google Scholar
  10. 10.
    Guo, X.-C. and Madix, R.J., Faraday Disc., 1996, vol. 105, p. 139.CrossRefGoogle Scholar
  11. 11.
    Carley, A.F., Davies, P.R., and Roberts, M.W., Chem. Commun., 1998, p. 1793.Google Scholar
  12. 12.
    Boronin, A.I., Pashusky, A., and Roberts, M.W., Catal. Lett., 1992, vol. 16, p. 345.CrossRefGoogle Scholar
  13. 13.
    Lu, Gang., Anderson, B.G., van Grondelle, J., and van Santen, R.A., J. Catal., 2001, vol. 199, p. 107.CrossRefGoogle Scholar
  14. 14.
    De Boer, M., Huisman, H.M., Mos, R.J.M., Leiveld, R.G., van Dillen, A.J., and Geus, J.W., Catal. Today, 1993, vol. 17, p. 189.CrossRefGoogle Scholar
  15. 15.
    Bagnasco, G., Peluso, G., Russo, G., Turco, M., Busca, G., and Ramis, G., 3rd World Cong. on Oxidation Catalysis, 1997, p. 643.Google Scholar
  16. 16.
    Amores, J.M.G., Escribano, V.S., Ramis, G., and Busca, G., Appl. Catal., B, 1997, vol. 13, p. 45.Google Scholar
  17. 17.
    Trombetta, M., Ramis, G., Busca, G., Montanari, B., and Vaccari, A., Langmuir, 1997, vol. 13, p. 4628.CrossRefGoogle Scholar
  18. 18.
    Ramis, G., Yi, L., and Busca, G., Catal. Today, 1996, vol. 28, p. 373.CrossRefGoogle Scholar
  19. 19.
    Amblard, M., Burch, R., and Southward, B.W.L., Catal. Today, 2000, vol. 59, p. 365.CrossRefGoogle Scholar
  20. 20.
    Sil’chenkova, O.N., Matyshak, V.A., and Korchak, V.N., Kinet. Katal., 1999, vol. 40, no.4, p. 583.Google Scholar
  21. 21.
    Kharitonov, A.S., Sheveleva, G.A., Panov, G.I., Sobolev, V.I., Paukshtis, E.A., and Romannikov, V.N., Appl. Catal., A, 1993, vol. 98, p. 33.Google Scholar
  22. 22.
    Mokrinskii, V.V., Slavinskaya, E.M., Noskov, A.S., and Zolotarsky, I.A., PCT Int. Appl. WO 9825698, 1998.Google Scholar
  23. 23.
    Ivanova, A.S., Slavinskaya, E.M., Mokrinskii, V.V., Polukhina, I.A., Tsybulya, S.V., Prosvirin, I.P., Bukhtiyarov, V.I., Rogov, V.A., Zaikovskii, V.I., and Noskov, A.S., J. Catal., 2004, pp. 213, 221.Google Scholar
  24. 24.
    Slavinskaya, E.M., Veniaminov, S.A., Notte, P., Ivanova, A.S., Boronin, A.I., Chesalov, Yu.A., Polukhina, I.A., and Noskov, A.S., J. Catal., 2004, vol. 222, p. 129.CrossRefGoogle Scholar
  25. 25.
    Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., Chichester: Wiley, 1983.Google Scholar
  26. 26.
    Handbook of X-ray Photoelectron Spectroscopy, Moulder, J.F., Stickle, W.F., Sobol, P.E., et al., Eds., Eden Prairie: Perkin-Elmer, 1992.Google Scholar
  27. 27.
    Ramis, G., Yi, L., Busca, G., Turco, M., Kotur, E., and Willey, R.J., J. Catal., 1995, vol. 157, p. 523.CrossRefGoogle Scholar
  28. 28.
    Sverdlov, L.M., Kovner, M.A., and Krainov, E.P., Kolebatel’nye spektry molekul (Vibrational Spectra of Molecules), Moscow: Nauka, 1970.Google Scholar
  29. 29.
    Sathyanarayana, D.N. and Nicholls, D., Spectrochim. Acta, 1978, vol. 34, p. 263.CrossRefGoogle Scholar
  30. 30.
    Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, J.R., Jr., NIST X-ray Photoelectron Spectroscopy Database. NIST Standard Reference Database 20, version 3.3 (Web Version).Google Scholar
  31. 31.
    Biwer, B.M. and Bernasek, S.L., J. Electron Spectrosc. Relat. Phenom., 1986, vol. 40, p. 339.CrossRefGoogle Scholar
  32. 32.
    Marchand, R., Agliz, D., Boukbir, L., and Quemerais, A., J. Non-Cryst. Solids, 1988, vol. 103, p. 35.CrossRefGoogle Scholar
  33. 33.
    Guimon, C., Gonbeau, D., Guillouzo, G.P., Dugne, O., Guette, A., Naslain, R., and Lahaye, M., Surf. Interface Anal., 1990, vol. 16, p. 440.CrossRefGoogle Scholar
  34. 34.
    Handbook of X-ray Photoelectron Spectroscopy, Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., Eds., Eden Prairie: Perkin-Elmer, 1979.Google Scholar
  35. 35.
    Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Briggs, D. and Seah, M., Eds., Chichester: Wiley, 1983.Google Scholar
  36. 36.
    Latha, G., Rajendran, N., and Rajeswari, S., J. Mater. Eng. Perform., 1997, vol. 6, no.6, p. 743.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. M. Slavinskaya
    • 1
  • Yu. A. Chesalov
    • 1
  • A. I. Boronin
    • 1
  • I. A. Polukhina
    • 1
  • A. S. Noskov
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations