Advertisement

Kinetics and Catalysis

, Volume 46, Issue 3, pp 344–353 | Cite as

Kinetics and Mechanism of the Oxidation of Alkanes and Alkenes with Peroxynitrous Acid in Aqueous Solution-Gas Phase Systems

  • V. L. Lobachev
  • E. S. Rudakov
Article

Abstract

The reactions of alkane and alkene oxidation with peroxynitrous acid (HOONO) in aqueous solution-gas phase systems were studied using a modified kinetic distribution method. The rate constants of oxidation of hydrocarbons (RH) were found to be unusual bell-shaped functions of the volume ratio between liquid and gas phases in a reactor. This result, as well as the previously found proportionality of the rate constants of the gas-phase RH + HOONO and RH + OH· reactions for alkanes, alkenes, and alkylbenzenes, was quantitatively interpreted assuming the rapid equilibrium distribution of HOONO and RH between a gas and a solution, the formation of OH· radicals in the two phases, and the interaction of these radicals with RH. The rate constant of peroxynitrous acid decomposition in the gas phase and the distribution coefficient of this acid between the gas phase and solution α = (0.4–2) × 10−6 were estimated. The capacity of HOONO for partition between different phases and for generation of OH· radicals in either of these phases can be of paramount importance for understanding the mechanism of lipid membrane oxidation initiated by peroxynitrous acid.

Keywords

Oxidation Lipid Catalysis Hydrocarbon Alkane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Halfpenny, E. and Robinson, P.L., J. Chem. Soc. A, 1952, no. 3, p. 928.Google Scholar
  2. 2.
    Huie, R.E. and Padmaja, S., Free Radical Res. Commun., 1993, vol. 18, no.2, p. 195.Google Scholar
  3. 3.
    Goldstein, S. and Czapski, G., Free Radical Biol. Med., 1995, vol. 19, no.6, p. 505.Google Scholar
  4. 4.
    Kissner, R., Nauser, Th., Bugnon, P., Lye, P.G., and Koppenol, W.H., Chem. Res. Toxicol., 1997, vol. 10, no.11, p. 1285.PubMedGoogle Scholar
  5. 5.
    Koppenol, W.H., Moreno, J.J., Pryor, W.A., Ischiropoulos, H., and Beckman, J.S., Chem. Res. Toxicol., 1992, vol. 5, no.6, p. 834.PubMedGoogle Scholar
  6. 6.
    Edwards, J.O. and Plumb, R.C., Prog. Inorg. Chem., 1994, vol. 41, p. 599.Google Scholar
  7. 7.
    Koppenol, W.H., Met. Ions Biol. Syst., 1999, vol. 36, p. 597.PubMedGoogle Scholar
  8. 8.
    Crow, J.P., Spruell, C., Chen, J., Gunn, C., Ischiropoulos, H., Tsai, M., Smith, C.D., Radi, R., Koppenol, W.H., and Beckman, J.S., Free Radical Biol. Med., 1994, vol. 16, no.3, p. 331.Google Scholar
  9. 9.
    Gerasimov, O.V. and Lymar, S.V., Inorg. Chem., 1999, vol. 38, no.19, p. 4317.Google Scholar
  10. 10.
    Merenyi, G., Lind, J., Goldstein, S., and Czapski, G., Chem. Res. Toxicol., 1998, vol. 11, no.7, p. 712.PubMedGoogle Scholar
  11. 11.
    Merenyi, G., Lind, J., Goldstein, S., and Czapski, G., J. Phys. Chem. A, 1999, vol. 103, no.29, p. 5685.Google Scholar
  12. 12.
    Richeson, C.E., Mulder, P., Bowry, V.W., and Ingold, K.U., J. Am. Chem. Soc., 1998, vol. 120, no.29, p. 7211.Google Scholar
  13. 13.
    Uppi, R.M., Squadrito, G.L., and Pryor, W.A., Arch. Biochem. Biophys., 1996, vol. 327, no.2, p. 335.PubMedGoogle Scholar
  14. 14.
    Lymar, S.V. and Hurst, J.K., Inorg. Chem., 1998, vol. 37, no.2, p. 294.Google Scholar
  15. 15.
    Goldstein, S. and Czapski, G., Inorg. Chem., 1997, vol. 36, no.22, p. 5113.Google Scholar
  16. 16.
    Merenyi, G., Czapski, G., and Goldstein, S., Inorg. Chem., 2003, vol. 42, no.12, p. 3796.PubMedGoogle Scholar
  17. 17.
    Perrin, D. and Koppenol, W.H., Arch. Biochem. Biophys., 2000, vol. 377, no.2, p. 266.PubMedGoogle Scholar
  18. 18.
    Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A., J. Biol. Chem., 1991, vol. 266, p. 4244.PubMedGoogle Scholar
  19. 19.
    Goldstein, S. and Czapski, G., Inorg. Chem., 1995, vol. 34, no.16, p. 4041.Google Scholar
  20. 20.
    Halfpenny, E. and Robinson, P.L., J. Chem. Soc. A, 1952, no. 3, p. 939.Google Scholar
  21. 21.
    Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A., Proc. Natl. Acad. Sci. U. S. A., 1990, vol. 87, p. 1620.PubMedGoogle Scholar
  22. 22.
    Houk, K.N., Condroski, K.R., and Pryor, W.A., J. Am. Chem. Soc., 1996, vol. 118, no.51, p. 13002.Google Scholar
  23. 23.
    Shustov, G.V., Spinney, R., and Rauk, A., J. Am. Chem. Soc., 2000, vol. 22, no.5, p. 1191.Google Scholar
  24. 24.
    Inoe, T., Sonoda, N., and Tsutsumi, S., Bull. Chem. Soc. Jpn., 1963, vol. 36, no.12, p. 1549.Google Scholar
  25. 25.
    Bach, R.D., Glukhovtsev, M.N., and Canepa, C., J. Am. Chem. Soc., 1998, vol. 120, no.4, p. 775.Google Scholar
  26. 26.
    Rudakov, E.S., Lobachev, V.L., Geletii, Yu.V., and Balavuen, Zh.Zh.A., Zh. Org. Khim., 1996, vol. 32, no.4, p. 522.Google Scholar
  27. 27.
    Lobachev, V.L. and Rudakov, E.S., Kinet. Katal., 2000, vol. 41, no.2, p. 208.Google Scholar
  28. 28.
    Rudakov, E.S., Lobachev, V.L., and Geletii, Yu.V., Chem. Res. Toxicol., 2001, vol. 14, no.9, p. 1232.PubMedGoogle Scholar
  29. 29.
    Lobachev, V.L., Kluger, S.L., Zimtseva, G.P., Geletii, Yu.V., and Rudakov, E.S., Teor. Eksp. Khim., 2003, vol. 39, no.1, p. 36.Google Scholar
  30. 30.
    Rudakov, E.S., Reaktsii alkanov s okislitelyami, metallokompleksami i radikalami v rastvorakh (Reactions of Alkanes with Oxidizers, Metal Complexes, and Free Radicals in Solutions), Kiev: Naukova Dumka, 1985.Google Scholar
  31. 31.
    Goncharuk, V.V., Kamalov, G.L., Kovtun, G.A., Rudakov, E.S., and Yatsimirskii, V.K., Kataliz. Mekhanizmy gomogennogo i geterogennogo kataliza, klasternye podkhody (Catalysis: Cluster-Based Approaches to the Mechanisms of Homogeneous and Heterogeneous Catalysis), Kiev: Naukova Dumka, 2002.Google Scholar
  32. 32.
    Atkinson, R., J. Phys. Chem. Ref. Data, 1997, vol. 26, no.2, p. 215.Google Scholar
  33. 33.
    Perry, R.A., Atkinson, R., and Pitts, J., J. Phys. Chem., 1977, vol. 81, no.4, p. 296.Google Scholar
  34. 34.
    Rudakov, E.S. and Tishchenko, N.A., Dokl. Akad. Nauk SSSR, 1980, vol. 253, no.1, p. 181.Google Scholar
  35. 35.
    Anbar, M. and Taube, H., J. Am. Chem. Soc., 1954, vol. 76, no.24, p. 6243.Google Scholar
  36. 36.
    Pryor, W.A., Jin, X., and Squadrito, G.L., Proc. Natl. Acad. Sci. U. S. A., 1994, vol. 91, p. 11173.PubMedGoogle Scholar
  37. 37.
    Squadrito, G.L., Jin, X., and Pryor, W.A., Arch. Biochem. Biophys., 1995, vol. 322, no.1, p. 53.PubMedGoogle Scholar
  38. 38.
    Zegota, H., Ichuchman, M.N., and von Sontage, C., J. Phys. Chem., 1984, vol. 88, no.23, p. 1589.Google Scholar
  39. 39.
    Fokin, A.A. and Schreinen, P.R., Chem. Rev., 2002, vol. 105, no.5, p. 1551.Google Scholar
  40. 40.
    Koppenol, W.H. and Kissner, R., Chem. Res. Toxicol., 1998, vol. 11, no.2, p. 87.PubMedGoogle Scholar
  41. 41.
    Matheu, D.M. and Green, W.H., Int. J. Chem. Kinet., 2000, vol. 32, no.2, p. 245.Google Scholar
  42. 42.
    O’Sullivan, D.W., Lee, M., Noone, B.C., and Heikes, B.G., J. Phys. Chem., 1996, vol. 100, p. 3241.Google Scholar
  43. 43.
    Regimbal, J.-M. and Mozurkewich, M., J. Phys. Chem. A, 1997, vol. 101, no.47, p. 8822.Google Scholar
  44. 44.
    Marla, S.S., Lee, J., and Groves, J.T., Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, p. 14242.Google Scholar
  45. 45.
    Denicola, A., Souza, J.M., and Radi, R., Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, p. 3566.PubMedGoogle Scholar
  46. 46.
    Radi, R., Chem. Res. Toxicol., 1998, vol. 11, no.7, p. 720.PubMedGoogle Scholar
  47. 47.
    Yurchenko, T.I., Gromova, G.N., and Khaizer, V.B., Zh. Obshch. Khim., 1946, vol. 16, no.9, p. 1505.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • V. L. Lobachev
    • 1
  • E. S. Rudakov
    • 1
  1. 1.Litvinenko Institute of Physicoorganic and Coal ChemistryNational Academy of Sciences of UkraineDonetskUkraine

Personalised recommendations