Advertisement

Kinetics and Catalysis

, Volume 45, Issue 6, pp 847–853 | Cite as

On the initiation of combustion of O2-O3 mixtures in the course of laser-induced asymmetrical ozone vibrations

  • B. I. Lukhovitskii
  • A. M. Starik
  • N. S. Titova
Peroxides-XI

Abstract

The kinetics of ignition of O2-O3 mixtures upon the excitation of O3 molecules by laser radiation with a wavelength #x03BB;I of 9.695 µm is considered. The stimulation of asymmetrical vibrations of O3 molecules was shown to produce more efficient dissociation of O3 molecules, faster heating of the mixture, and, as a consequence, a decrease in the induction time and ignition temperature. Even when the energy of radiation applied to the gas is low (Ein ≈ 0.15 J/cm2), the ignition temperature of pure ozone can be reduced from 520 to 300 K at a pressure of 103 Pa.

Keywords

Radiation Combustion Physical Chemistry Ozone Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M. 1980Matematicheskaya teoriya goreniya i vzryvaNaukaMoscow(Mathematical Theory of Combustion and Explosion)Google Scholar
  2. 2.
    Brown, R.O. 1985Combust. Flame621Google Scholar
  3. 3.
    Starik, A.M., Titova, N.S. 2000Kinet. Katal.41650Google Scholar
  4. 4.
    Starik, A.M., Titova, N.S. 2001Zh. Tekh. Fiz.711Google Scholar
  5. 5.
    Lunin, V.V., Popovich, M.P., Tkachenko, S.N. 1998Fizicheskaya khimiya ozonaMosk. Gos. Univ.Moscow(The Physical Chemistry of Ozone)Google Scholar
  6. 6.
    Panchenko, V.Ya., Sizova, I.M., and Sukhorukov, A.P., Zh. Prikl. Mekh. Tekh. Fiz., 1981, no. 4, p. 17.Google Scholar
  7. 7.
    Raffel, B., Warnatz, J., Wolfrum, J. 1985J. Appl. Phys.37189Google Scholar
  8. 8.
    Chou, M.-S., Zukowski, T.J. 1991Combust. Flame87191Google Scholar
  9. 9.
    Lucas, D., Dunn-Rankin, D., Hom, K., Brown, N.J. 1987Combust. Flame69171Google Scholar
  10. 10.
    Tarver, C.M. 1982Combust. Flame46111Google Scholar
  11. 11.
    Tkachenko, S.N. 1984Cand. Sci. (Chem.) DissertationMoscow State UniversityMoscowGoogle Scholar
  12. 12.
    Grabovskii, V.I., Starik, A.M. 1994Kvantovaya Electron.21365Google Scholar
  13. 13.
    Starik, A.M., Titova, N.S. 2000Khim. Fiz.1961Google Scholar
  14. 14.
    Starik, A.M., Titova, N.S. 2003Kinet. Katal.4535Google Scholar
  15. 15.
    Fiziko-khimicheskie protsessy v gazovoi dinamike. Spravochnik (Physicochemical Processes in Gas Dynamics: A Handbook), Chernyi, G.G. and Losev S.A., Eds., 2002, vol. 2, p. 367.Google Scholar
  16. 16.
    Dautov, N.G., Starik, A.M. 1994Teplofiz. Vys. Temp.32222Google Scholar
  17. 17.
    Rusanov, V.D., Fridman, A.A. 1984Fizika khimicheski aktivnoi plazmyNaukaMoscow(Physics of Chemically Active Plasma)Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • B. I. Lukhovitskii
    • 1
  • A. M. Starik
    • 1
  • N. S. Titova
    • 1
  1. 1.Baranov Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations