Kinetics and Catalysis

, Volume 46, Issue 1, pp 47–51 | Cite as

Role of catalyst deactivation and regeneration in the heck reaction involving unactivated aryl bromides

  • A. F. Shimdt
  • V. V. Smirnov


Excess aryl halide and a reducing agent admixture extend the lifetime of a catalyst in the Heck reaction. In the presence of a simple catalytic system without any ligands, the reaction between an unactivated aryl bromide and styrene in dimethyl formamide yields a stoichiometric amount of the product when the starting mixture contains 0.04–1.6 mol % PdCl2 , 18% HCOONa, 112% AcONa, and a sixfold excess of the aryl bromide (with respect to the initial amount of styrene). It is possible to raise the turnover number of the catalyst by conducting the reaction in several successive runs without regenerating or separating the catalyst. The data obtained confirm the earlier hypothesis that colloidal palladium particles formed during the reaction serve as a main “reservoir” accumulating catalytically active, homogeneous Pd(0) complexes.


Palladium Styrene Halide Catalytic System Dimethyl Formamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Whitcombe, N.J., King Luik (Mimi) Hii, and Gibson, S.E., Tetrahedron, 2001, vol. 57, no. 35, p. 7449.Google Scholar
  2. 2.
    Beletskaya, I.P. and Chepracov, A.V., Chem. Rev., 2000, vol. 100, no. 8, p. 3009.CrossRefGoogle Scholar
  3. 3.
    Kohler, K., Heidenreich, R.G., Krauter, J.G.E., and Pietsch, J., Chem.—Eur. J., 2002, vol. 8, no. 3, p. 622.Google Scholar
  4. 4.
    Biffis, A., Zecca, M., and Basato, M., Eur. J. Inorg. Chem., 2001, vol. 421, no. 5, p. 1131.Google Scholar
  5. 5.
    Reetz, M.T., Lohmer, G., and Schwickardi, R., Angew. Chem., Int. Ed. Engl., 1998, vol. 37, no. 4, p. 481.Google Scholar
  6. 6.
    Shmidt, A.F., Mametova, L.V., Tkach, V.S., and Dmit-rieva, T.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1991, no. 1, p. 208.Google Scholar
  7. 7.
    Shmidt, A.F., Halaiqa, A., Nindakova, L.O., and Skripina, O.S., React. Kinet. Catal. Lett., 1999, vol. 67, no. 2, p. 301.Google Scholar
  8. 8.
    Reetz, M.T. and Westermann, E., Angew. Chem., 2000, vol. 39, no. 1, p. 165.CrossRefGoogle Scholar
  9. 9.
    Shmidt, A.F. and Mametova, L.V., Kinet. Katal., 1996, vol. 37, no. 3, p. 431.Google Scholar
  10. 10.
    Shmidt, A.F., Smirnov, V.V., Starikova, O.V., and Elaev, A.V., Kinet. Katal., 2001, vol. 42, p. 223.Google Scholar
  11. 11.
    Biffis, A., Zecca, M., and Basato, M., J. Mol. Catal. A: Chem., 2001, vol. 173, nos. 1–2, p. 249.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • A. F. Shimdt
    • 1
  • V. V. Smirnov
    • 1
  1. 1.Irkutsk State UniversityIrkutskRussia

Personalised recommendations