Cardiac tissue engineering therapeutic products to enhance myocardial contractility

Abstract

Researchers continue to develop therapeutic products for the repair and replacement of myocardial tissue that demonstrates contractility equivalent to normal physiologic states. As clinical trials focused on pure adult stem cell populations undergo meta-analysis for preclinical through clinical design, the field of tissue engineering is emerging as a new clinical frontier to repair the myocardium and improve cardiac output. This review will first discuss the three primary tissue engineering product themes that are advancing in preclinical to clinical models: (1) cell-free scaffolds, (2) scaffold-free cellular, and (3) hybrid cell and scaffold products. The review will then focus on the products that have advanced from preclinical models to clinical trials. In advancing the cardiac regenerative medicine field, long-term gains towards discovering an optimal product to generate functional myocardial tissue and eliminate heart failure may be achieved.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ahadian S et al (2018) Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies. Adv Healthc Mater 7(2):1700506. https://doi.org/10.1002/adhm.201700506

    CAS  Article  Google Scholar 

  2. Akintewe OO, Roberts EG, Rim NG, Ferguson MAH, Wong JY (2017) Design approaches to myocardial and vascular tissue engineering. Annu Rev Biomed Eng 19:389–414. https://doi.org/10.1146/annurev-bioeng-071516-044641

    CAS  Article  PubMed  Google Scholar 

  3. Ali SR, Hippenmeyer S, Saadat LV, Luo L, Weissman IL, Ardehali R (2014) Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proc Natl Acad Sci USA 111:8850–8855. https://doi.org/10.1073/pnas.1408233111

    CAS  Article  PubMed  Google Scholar 

  4. Alvarez R Jr et al (2019) Cardiomyocyte cell cycle dynamics and proliferation revealed through cardiac-specific transgenesis of fluorescent ubiquitinated cell cycle indicator (FUCCI). J Mol Cell Cardiol 127:154–164. https://doi.org/10.1016/j.yjmcc.2018.12.007

    CAS  Article  PubMed  Google Scholar 

  5. An F, Qu Y, Liu X, Zhong R, Luo Y (2015) Organ-on-a-chip: new platform for biological analysis. Anal Chem Insights 10:39–45. https://doi.org/10.4137/ACI.S28905

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther 26:1610–1623. https://doi.org/10.1016/j.ymthe.2018.05.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Becker M et al (2018) Towards a novel patch material for cardiac applications: tissue-specific extracellular matrix introduces essential key features to decellularized amniotic membrane. Int J Mol Sci 19(4):1032. https://doi.org/10.3390/ijms19041032

    CAS  Article  PubMed Central  Google Scholar 

  8. Bergmann O et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575. https://doi.org/10.1016/j.cell.2015.05.026

    CAS  Article  PubMed  Google Scholar 

  9. Bobe K et al (2013) In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater 9(10):8611–8623. https://doi.org/10.1016/j.actbio.2013.03.035

    CAS  Article  PubMed  Google Scholar 

  10. Broughton KM (2019) Prevalence of comorbidities in heart failure patients and those treated with cellular therapeutics. Expert Rev Cardiovasc Ther 17:597–604. https://doi.org/10.1080/14779072.2019.1653185

    CAS  Article  PubMed  Google Scholar 

  11. Broughton KM, Russell B (2015) Cardiomyocyte subdomain contractility arising from microenvironmental stiffness and topography. Biomech Model Mechanobiol 14:589–602. https://doi.org/10.1007/s10237-014-0624-2

    Article  PubMed  Google Scholar 

  12. Broughton KM, Sussman MA (2016) Empowering adult stem cells for myocardial regeneration V2.0: success in small steps. Circ Res 118(5), 867–880. https://doi.org/10.1161/CIRCRESAHA.115.305227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Broughton KM, Sussman MA (2018) Enhancement strategies for cardiac regenerative cell therapy: focus on adult stem cells. Circ Res 123:177–187. https://doi.org/10.1161/CIRCRESAHA.118.311207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Chen LJ, Kaji H (2017) Modeling angiogenesis with micro- and nanotechnology. Lab Chip 17:4186–4219. https://doi.org/10.1039/c7lc00774d

    CAS  Article  PubMed  Google Scholar 

  15. Chen S, Nakamoto T, Kawazoe N, Chen G (2015) Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds. Biomaterials 73:23–31. https://doi.org/10.1016/j.biomaterials.2015.09.010

    CAS  Article  PubMed  Google Scholar 

  16. Christman KL, Fok HH, Sievers RE, Fang Q, Lee RJ (2004) Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng 10:403–409. https://doi.org/10.1089/107632704323061762

    CAS  Article  PubMed  Google Scholar 

  17. Conant G, Lai BFL, Lu RXZ, Korolj A, Wang EY, Radisic M (2017) High-content assessment of cardiac function using heart-on-a-chip devices as drug screening model. Stem Cell Rev 13:335–346. https://doi.org/10.1007/s12015-017-9736-2

    Article  Google Scholar 

  18. Dworatzek E, Baczko I, Kararigas G (2016) Effects of aging on cardiac extracellular matrix in men and women. Proteomics Clin Appl 10:84–91. https://doi.org/10.1002/prca.201500031

    CAS  Article  PubMed  Google Scholar 

  19. Edri R et al (2019) Personalized hydrogels for engineering diverse fully autologous tissue implants. Adv Mater 31:e1803895. https://doi.org/10.1002/adma.201803895

    CAS  Article  PubMed  Google Scholar 

  20. Engelmayr GC Jr, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7:1003–1010. https://doi.org/10.1038/nmat2316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Etzion S et al (2001) Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol 33:1321–1330. https://doi.org/10.1006/jmcc.2000.1391

    CAS  Article  PubMed  Google Scholar 

  22. Administration FaD (2007) Regulation of human cells, tissues, and cellular and tissue-based products (HCT/Ps)—small entity compliance guide. https://www.fda.gov/media/70689/download

  23. Frangogiannis NG (2017) The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest 127(5):1600–1612. https://doi.org/10.1172/JCI87491

    Article  PubMed  PubMed Central  Google Scholar 

  24. Frey N et al (2014) Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: a first-in-man study. Circulation 7(6):806–812. https://doi.org/10.1161/CIRCINTERVENTIONS.114.001478

    Article  PubMed  Google Scholar 

  25. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790. https://doi.org/10.1016/j.biomaterials.2011.11.003

    CAS  Article  Google Scholar 

  26. Gao L et al (2017) Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res 120(8):1318–1325. https://doi.org/10.1161/CIRCRESAHA.116.310277

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Golpanian S et al (2016) Concise review: review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease. Stem Cells Transl Med 5(2):186–191. https://doi.org/10.5966/sctm.2015-0101

    Article  PubMed  Google Scholar 

  28. Golpanian S, Wolf A, Hatzistergos KE, Hare JM (2016) Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev 96:1127–1168. https://doi.org/10.1152/physrev.00019.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Grigorian Shamagian L et al (2019) Perspectives on directions and priorities for future preclinical studies in regenerative medicine. Circ Res 124:938–951. https://doi.org/10.1161/CIRCRESAHA.118.313795

    CAS  Article  PubMed  Google Scholar 

  30. Herget GW, Neuburger M, Plagwitz R, Adler CP (1997) DNA content, ploidy level and number of nuclei in the human heart after myocardial infarction. Cardiovasc Res 36(1):45–51. https://doi.org/10.1016/s0008-6363(97)00140-5

    CAS  Article  PubMed  Google Scholar 

  31. Hesse M, Doengi M, Becker A, Kimura K, Voeltz N, Stein V, Fleischmann BK (2018) Midbody positioning and distance between daughter nuclei enable unequivocal identification of cardiomyocyte cell division in mice. Circ Res 123:1039–1052. https://doi.org/10.1161/CIRCRESAHA.118.312792

    CAS  Article  PubMed  Google Scholar 

  32. Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T (2010) Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 139(2):431–436. https://doi.org/10.1016/j.jtcvs.2009.09.057

    Article  PubMed  Google Scholar 

  33. Horn MA (2015) Cardiac physiology of aging: extracellular considerations. Compr Physiol 5(3):1069–1121. https://doi.org/10.1002/cphy.c140063

    Article  PubMed  Google Scholar 

  34. Ishida M et al (2019) Transplantation of human-induced pluripotent stem cell-derived cardiomyocytes is superior to somatic stem cell therapy for restoring cardiac function and oxygen consumption in a porcine model of myocardial infarction. Transplantation 103:291–298. https://doi.org/10.1097/TP.0000000000002384

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jackson M, Connell MG, Smith A (1993) Development of the collagen network of the human fetal myocardium: an immunohistochemical study. Int J Cardiol 41:77–86

    CAS  Article  Google Scholar 

  36. Jang J et al (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274. https://doi.org/10.1016/j.biomaterials.2016.10.026

    CAS  Article  PubMed  Google Scholar 

  37. Kai D, Jin G, Prabhakaran MP, Ramakrishna S (2013) Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnol J 8:59–72. https://doi.org/10.1002/biot.201200249

    CAS  Article  PubMed  Google Scholar 

  38. Kaynak Bayrak G, Gumusderelioglu M (2019) Construction of cardiomyoblast sheets for cardiac tissue repair: comparison of three different approaches. Cytotechnology 24:819–833. https://doi.org/10.1007/s10616-019-00325-2

    CAS  Article  Google Scholar 

  39. Kim T, Echeagaray OH, Wang BJ, Casillas A, Broughton KM, Kim BH, Sussman MA (2018) In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Sci Rep 8:12060. https://doi.org/10.1038/s41598-018-30551-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Kolewe ME, Park H, Gray C, Ye X, Langer R, Freed LE (2013) 3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture Adv Mater 25(32), 4459–4465. https://doi.org/10.1002/adma.201301016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Leone M, Musa G, Engel FB (2018) Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc Res 114(8):1115–1131. https://doi.org/10.1093/cvr/cvy056

    CAS  Article  PubMed  Google Scholar 

  42. Li RK et al. (1996) Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 62(3), 654–660. (discussion 660–651)

    CAS  Article  Google Scholar 

  43. Li Y, Meng H, Liu Y, Lee BP (2015) Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci World J 2015:685690. https://doi.org/10.1155/2015/685690

    CAS  Article  Google Scholar 

  44. Liu Z, Yue S, Chen X, Kubin T, Braun T (2010) Regulation of cardiomyocyte polyploidy and multinucleation by CyclinG1. Circ Res 106(9):1498–1506. https://doi.org/10.1161/CIRCRESAHA.109.211888

    CAS  Article  PubMed  Google Scholar 

  45. Lu Q, Ganesan K, Simionescu DT, Vyavahare NR (2004) Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 25:5227–5237. https://doi.org/10.1016/j.biomaterials.2003.12.019

    CAS  Article  PubMed  Google Scholar 

  46. Maidhof R, Marsano A, Lee EJ, Vunjak-Novakovic G (2010) Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol Prog 26:565–572. https://doi.org/10.1002/btpr.337

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233. https://doi.org/10.1016/j.addr.2007.03.012

    CAS  Article  PubMed  Google Scholar 

  48. Martens TP et al (2009) Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transpl 18:297–304. https://doi.org/10.3727/096368909788534915

    Article  Google Scholar 

  49. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15:635–643. https://doi.org/10.1021/bm401679q

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Masumoto H et al (2012) Pluripotent stem cell-engineered cell sheets reassembled with defined cardiovascular populations ameliorate reduction in infarct heart function through cardiomyocyte-mediated neovascularization. Stem Cells 30:1196–1205. https://doi.org/10.1002/stem.1089

    CAS  Article  PubMed  Google Scholar 

  51. Matsuura K et al (2011) Creation of mouse embryonic stem cell-derived cardiac cell sheets. Biomaterials 32:7355–7362. https://doi.org/10.1016/j.biomaterials.2011.05.042

    CAS  Article  PubMed  Google Scholar 

  52. Memon IA et al (2005) Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. J Thorac Cardiovasc Surg 130:1333–1341. https://doi.org/10.1016/j.jtcvs.2005.07.023

    Article  PubMed  Google Scholar 

  53. Menasche P et al (2018) Transplantation of human embryonic stem cell-derived cardiovascular progenitors for severe ischemic left ventricular dysfunction. J Am Coll Cardiol 71:429–438. https://doi.org/10.1016/j.jacc.2017.11.047

    Article  PubMed  Google Scholar 

  54. Mentz RJ et al (2014) Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 64:2281–2293. https://doi.org/10.1016/j.jacc.2014.08.036

    Article  PubMed  PubMed Central  Google Scholar 

  55. Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML (2017) The impact of aging on cardiac extracellular matrix. Geroscience 39(1):7–18. https://doi.org/10.1007/s11357-017-9959-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Miyahara Y et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465. https://doi.org/10.1038/nm1391

    CAS  Article  PubMed  Google Scholar 

  57. Monsanto MM et al (2017) Concurrent isolation of 3 distinct cardiac stem cell populations from a single human heart biopsy. Circ Res 121(2):113–124. https://doi.org/10.1161/CIRCRESAHA.116.310494

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Muller-Ehmsen J et al (2002) Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol 34:107–116. https://doi.org/10.1006/jmcc.2001.1491

    CAS  Article  PubMed  Google Scholar 

  59. Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Eng Part B 14:149–165. https://doi.org/10.1089/ten.teb.2007.0332

    CAS  Article  Google Scholar 

  60. Oken DE, Boucek RJ (1957) Quantitation of collagen in human myocardium. Circ Res 5:357–361. https://doi.org/10.1161/01.res.5.4.357

    CAS  Article  PubMed  Google Scholar 

  61. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14:213–221. https://doi.org/10.1038/nm1684

    CAS  Article  PubMed  Google Scholar 

  62. Pagliari S, Tirella A, Ahluwalia A, Duim S, Goumans MJ, Aoyagi T, Forte G (2014) A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells, dynamic cell cultures, and porous scaffolds. Front Physiol 5:210. https://doi.org/10.3389/fphys.2014.00210

    Article  PubMed  PubMed Central  Google Scholar 

  63. Patterson M et al (2017) Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat Genet 49:1346–1353. https://doi.org/10.1038/ng.3929

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Pianezzi E et al (2019) Role of somatic cell sources in the maturation degree of human induced pluripotent stem cell-derived cardiomyocytes. Biochim Biophys Acta 28:118538. https://doi.org/10.1016/j.bbamcr.2019.118538

    CAS  Article  Google Scholar 

  65. Ponnusamy M, Li PF, Wang K (2017) Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cell Mol Life Sci 74:1019–1034. https://doi.org/10.1007/s00018-016-2375-y

    CAS  Article  PubMed  Google Scholar 

  66. Qasim M, Haq F, Kang MH, Kim JH (2019) 3D printing approaches for cardiac tissue engineering and role of immune modulation in tissue regeneration. Int J Nanomed 14:1311–1333. https://doi.org/10.2147/IJN.S189587

    CAS  Article  Google Scholar 

  67. Qian Z, Sharma D, Jia W, Radke D, Kamp T, Zhao F (2019) Engineering stem cell cardiac patch with microvascular features representative of native myocardium. Theranostics 9(8):2143–2157. https://doi.org/10.7150/thno.29552

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Radisic M, Deen W, Langer R, Vunjak-Novakovic G (2005) Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 288:H1278–H1289. https://doi.org/10.1152/ajpheart.00787.2004

    CAS  Article  PubMed  Google Scholar 

  69. Radisic M et al (2006) Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng 12:2077–2091. https://doi.org/10.1089/ten.2006.12.2077

    CAS  Article  PubMed  Google Scholar 

  70. Rajabi-Zeleti S et al (2014) The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials 35:970–982. https://doi.org/10.1016/j.biomaterials.2013.10.045

    CAS  Article  PubMed  Google Scholar 

  71. Rao SV et al (2016) Bioabsorbable intracoronary matrix for prevention of ventricular remodeling after myocardial infarction. J Am Coll Cardiol 68:715–723. https://doi.org/10.1016/j.jacc.2016.05.053

    Article  PubMed  Google Scholar 

  72. Roberts EG et al (2019) Development of a bio-MEMS device for electrical and mechanical conditioning and characterization of cell sheets for myocardial repair. Biotechnol Bioeng. https://doi.org/10.1002/bit.27123

    Article  PubMed  Google Scholar 

  73. Robinson KA et al (2005) Extracellular matrix scaffold for cardiac repair. Circulation 112(9):I135–143. https://doi.org/10.1161/CIRCULATIONAHA.104.525436

    CAS  Article  PubMed  Google Scholar 

  74. Ronaldson-Bouchard K et al (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:239–243. https://doi.org/10.1038/s41586-018-0016-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834. https://doi.org/10.1161/CIRCRESAHA.113.300219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Schwach V, Passier R (2019) Native cardiac environment and its impact on engineering cardiac tissue. Biomater Sci 7(9):3566–3580. https://doi.org/10.1039/c8bm01348a

    CAS  Article  PubMed  Google Scholar 

  77. Sekiya S, Shimizu T, Yamato M, Kikuchi A, Okano T (2006) Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun 341:573–582. https://doi.org/10.1016/j.bbrc.2005.12.217

    CAS  Article  PubMed  Google Scholar 

  78. Senyo SE et al (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436. https://doi.org/10.1038/nature11682

    CAS  Article  PubMed  Google Scholar 

  79. Serpooshan V et al (2017) Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials 131:47–57. https://doi.org/10.1016/j.biomaterials.2017.03.037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Shimizu T et al (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90(3):e40–e48

    CAS  Article  Google Scholar 

  81. Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24:2309–2316

    CAS  Article  Google Scholar 

  82. Shin SR et al (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7:2369–2380. https://doi.org/10.1021/nn305559j

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Smorodinova N et al (2015) Bioptic study of left and right atrial interstitium in cardiac patients with and without atrial fibrillation: interatrial but not rhythm-based differences. PLoS ONE 10:e0129124. https://doi.org/10.1371/journal.pone.0129124

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Stevens KR, Pabon L, Muskheli V, Murry CE (2009) Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A 15:1211–1222. https://doi.org/10.1089/ten.tea.2008.0151

    CAS  Article  PubMed  Google Scholar 

  85. Sugiura T, Matsumura G, Miyamoto S, Miyachi H, Breuer CK, Shinoka T (2018) Tissue-engineered vascular grafts in children with congenital heart disease: intermediate term follow-up. Semin Thorac Cardiovasc Surg 30:175–179. https://doi.org/10.1053/j.semtcvs.2018.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tandon N et al (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4:155–173. https://doi.org/10.1038/nprot.2008.183

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Telukuntla KS, Suncion VY, Schulman IH, Hare JM (2013) The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc 2(5):e000338. https://doi.org/10.1161/JAHA.113.000338

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Tomov ML et al (2019) Engineering functional cardiac tissues for regenerative medicine applications. Curr Cardiol Rep 21:105. https://doi.org/10.1007/s11886-019-1178-9

    Article  PubMed  PubMed Central  Google Scholar 

  89. Uchmanowicz I et al (2019) Coexisting frailty with heart failure. Front Physiol 10:791. https://doi.org/10.3389/fphys.2019.00791

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vrtovec B, Bolli R (2019) Potential strategies for clinical translation of repeated cell therapy. Circ Res 124:690–692. https://doi.org/10.1161/CIRCRESAHA.118.314653

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Waas M et al (2019) Are these cardiomyocytes? protocol development reveals impact of sample preparation on the accuracy of identifying cardiomyocytes by flow cytometry. Stem Cell Rep 12(2):395–410. https://doi.org/10.1016/j.stemcr.2018.12.016

    CAS  Article  Google Scholar 

  92. Wang CC et al (2008) Direct intramyocardial injection of mesenchymal stem cell sheet fragments improves cardiac functions after infarction. Cardiovasc Res 77:515–524. https://doi.org/10.1093/cvr/cvm046

    CAS  Article  PubMed  Google Scholar 

  93. Zhang Y et al (2019) A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent model. Acta Biomater 86:223–234. https://doi.org/10.1016/j.actbio.2019.01.022

    CAS  Article  PubMed  Google Scholar 

  94. Zhang W, Choi JK, He X (2017) Engineering microvascularized 3D tissue using alginate-chitosan microcapsules. J Biomater Tissue Eng 7(2):170–173. https://doi.org/10.1166/jbt.2017.1547

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zimmermann WH et al (2002) Tissue engineering of a differentiated cardiac muscle construct. Circ Res 90:223–230

    CAS  Article  Google Scholar 

  96. Zimmermann WH et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458. https://doi.org/10.1038/nm1394

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark A. Sussman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Broughton, K.M., Sussman, M.A. Cardiac tissue engineering therapeutic products to enhance myocardial contractility. J Muscle Res Cell Motil 41, 363–373 (2020). https://doi.org/10.1007/s10974-019-09570-6

Download citation

Keywords

  • Tissue engineering
  • Heart failure
  • Therapies
  • Clinical trials