Sarcomeric myopathies associated with tremor: new insights and perspectives

Abstract

Myopathies are a large and heterogeneous group of disorders associated with mutations in structural and regulatory genes responsible for proper muscle assembly, organization and function. Despite the molecular diversity of inherited myopathies, they have historically been classified by the phenotypic traits observed in affected patients. It is therefore common for myopathies originating from mutations in different genes to be grouped together due to similar physical manifestations, and conversely myopathies resulting from mutations in the same gene to be considered separately due to disparate symptoms. Herein, we focus on an early onset myopathy linked to inherited or de novo mutations in sarcomeric genes that is characterized by muscle weakness, hypotonia and tremor, and further highlight that it may constitute a new form of myopathy, with tremor as its defining feature. Based on recent reports, we also discuss the possible myogenic origin of the tremor that may start at the level of the sarcomere due to structural and/or contractile alterations occurring as a result of the identified mutations. It is our hope that establishment of this form of myopathy accompanied by myogenic tremor as a new disease entity will have important diagnostic and therapeutic implications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abdulhaq UN, Daana M, Dor T et al (2016) Nemaline body myopathy caused by a novel mutation in troponin T1 (TNNT1). Muscle Nerve 53:564–569. https://doi.org/10.1002/mus.24885

    CAS  Article  PubMed  Google Scholar 

  2. Ackermann MA, Kerr JP, King B et al (2015) The phosphorylation profile of myosin binding protein-C slow is dynamically regulated in slow-twitch muscles in health and disease. Sci Rep 5:12637. https://doi.org/10.1038/srep12637

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Ackermann MA, Kontrogianni-Konstantopoulos A (2011) Myosin binding protein-C: a regulator of actomyosin interaction in striated muscle. J Biomed Biotechnol 2011:636403. https://doi.org/10.1155/2011/636403

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Ackermann MA, Kontrogianni-Konstantopoulos A (2013) Myosin binding protein-C slow: a multifaceted family of proteins with a complex expression profile in fast and slow twitch skeletal muscles. Front Physiol 4:391. https://doi.org/10.3389/fphys.2013.00391

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ackermann MA, Patel PD, Valenti J et al (2013) Loss of actomyosin regulation in distal arthrogryposis myopathy due to mutant myosin binding protein-C slow. FASEB J 27:3217–3228. https://doi.org/10.1096/fj.13-228882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Cope MJ, Whisstock J, Rayment I, Kendrick-Jones J (1996) Conservation within the myosin motor domain: implications for structure and function. Structure 4:969–987

    CAS  Article  Google Scholar 

  7. Cullup T, Lamont PJ, Cirak S et al (2012) Mutations in MYH7 cause multi-minicore disease (MmD) with variable cardiac involvement. Neuromuscul Disord 22:1096–1104. https://doi.org/10.1016/j.nmd.2012.06.007

    CAS  Article  PubMed  Google Scholar 

  8. de Tombe PP (2006) Myosin binding protein C in the heart. Circ Res 98:1234–1236. https://doi.org/10.1161/01.RES.0000225873.63162.c4

    CAS  Article  PubMed  Google Scholar 

  9. Donkervoort S, Papadaki M, de Winter JM et al (2015) TPM 3 deletions cause a hypercontractile congenital muscle stiffness phenotype. Ann Neurol 78:982–994. https://doi.org/10.1002/ana.24535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Edgerton VR, Roy RR, Allen DL, Monti RJ (2002) Adaptations in skeletal muscle disuse or decreased-use atrophy. Am J Phys Med Rehabil 81:S127–S147. https://doi.org/10.1097/01.PHM.0000029778.56440.90

    Article  PubMed  Google Scholar 

  11. Evans JM, Cox ML, Huska J et al (2016) Exome sequencing reveals a nebulin nonsense mutation in a dog model of nemaline myopathy. Mamm Genome 27:495–502. https://doi.org/10.1007/s00335-016-9644-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fiorillo C, Astrea G, Savarese M et al (2016) MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis 11:91. https://doi.org/10.1186/s13023-016-0476-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Fujii J, Otsu K, Zorzato F et al (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448–451

    CAS  Article  Google Scholar 

  14. Galińska-Rakoczy A, Engel P, Xu C et al (2008) Structural basis for the regulation of muscle contraction by troponin and tropomyosin. J Mol Biol 379:929–935. https://doi.org/10.1016/j.jmb.2008.04.062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Geist J, Kontrogianni-Konstantopoulos A (2016) MYBPC1, an emerging myopathic gene: what we know and what we need to learn. Front Physiol 7:410. https://doi.org/10.3389/fphys.2016.00410

    Article  PubMed  PubMed Central  Google Scholar 

  16. Grey C, Méry A, Pucéat M (2005) Fine-tuning in Ca2+ homeostasis underlies progression of cardiomyopathy in myocytes derived from genetically modified embryonic stem cells. Hum Mol Genet 14:1367–1377. https://doi.org/10.1093/hmg/ddi146

    CAS  Article  PubMed  Google Scholar 

  17. Jin J-P, Brotto MA, Hossain MM et al (2003) Truncation by Glu 180 Nonsense mutation results in complete loss of slow skeletal muscle troponin T in a lethal nemaline myopathy. J Biol Chem 278:26159–26165. https://doi.org/10.1074/jbc.M303469200

    CAS  Article  PubMed  Google Scholar 

  18. Johnston JJ, Kelley RI, Crawford TO et al (2000) A novel nemaline myopathy in the amish caused by a mutation in troponin T1. Am J Hum Genet 67:814–821. https://doi.org/10.1086/303089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL et al (2009) Muscle giants: molecular scaffolds in sarcomerogenesis. Physiol Rev 89:1217–1267. https://doi.org/10.1152/physrev.00017.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Lamont PJ, Udd B, Mastaglia FL et al (2006) Laing early onset distal myopathy: slow myosin defect with variable abnormalities on muscle biopsy. J Neurol Neurosurg Psychiatry 77:208–215. https://doi.org/10.1136/jnnp.2005.073825

    CAS  Article  PubMed  Google Scholar 

  21. Lefter S, Hardiman O, McLaughlin RL et al (2015) A novel MYH7 Leu1453pro mutation resulting in Laing distal myopathy in an Irish family. Neuromuscul Disord 25:155–160. https://doi.org/10.1016/j.nmd.2014.09.007

    Article  PubMed  Google Scholar 

  22. Li S, Hong M (2011) Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic-angle-spinning solid-state NMR. J Am Chem Soc 133:1534. https://doi.org/10.1021/JA108943N

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Mah JK, Joseph JT (2016) An overview of congenital myopathies. Continuum (Minneap Minn) 22:1932–1953. https://doi.org/10.1212/CON.0000000000000404

    Article  Google Scholar 

  24. Marra JD, Engelstad KE, Ankala A et al (2015) Identification of a novel nemaline myopathy-causing mutation in the troponin T1 (TNNT1) gene: a case outside of the old order Amish. Muscle Nerve 51:767–772. https://doi.org/10.1002/mus.24528

    CAS  Article  PubMed  Google Scholar 

  25. Martinsson T, Oldfors A, Darin N et al (2000) Autosomal dominant myopathy: missense mutation (Glu-706 → Lys) in the myosin heavy chain IIa gene. Proc Natl Acad Sci USA 97:14614–14619. https://doi.org/10.1073/pnas.250289597

    CAS  Article  PubMed  Google Scholar 

  26. Martyn DA (2004) Myosin binding protein-C: structural and functional complexity. J Mol Cell Cardiol 37:813–815. https://doi.org/10.1016/j.yjmcc.2004.07.005

    CAS  Article  PubMed  Google Scholar 

  27. Morales-Briceño H, Fois AF, Fung VSC (2018) Tremor. Handbook of clinical neurology. Elsevier, Amsterdam, pp 283–301

    Google Scholar 

  28. Murgiano L, Tammen I, Harlizius B, Drögemüller C (2012) A de novo germline mutation in MYH7 causes a progressive dominant myopathy in pigs. BMC Genet 13:99. https://doi.org/10.1186/1471-2156-13-99

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Myers CD, Goh PY, Allen TS et al (1996) Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of Caenorhabditis elegans. J Cell Biol 132:1061–1077. https://doi.org/10.1083/JCB.132.6.1061

    CAS  Article  PubMed  Google Scholar 

  30. Ottenheijm CAC, Lawlor MW, Stienen GJM et al (2011) Changes in cross-bridge cycling underlie muscle weakness in patients with tropomyosin 3-based myopathy. Hum Mol Genet 20:2015–2025. https://doi.org/10.1093/hmg/ddr084

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Richter A, Wissel J, Harlizius B et al (1995) The campus syndrome in pigs: neurological, neurophysiological, and neuropharmacological characterization of a new genetic animal model of high-frequency tremor. Exp Neurol 134:205–213. https://doi.org/10.1006/exnr.1995.1050

    CAS  Article  PubMed  Google Scholar 

  32. Schorling D, Kirschner J, Bönnemann C (2017) Congenital muscular dystrophies and myopathies: an overview and update. Neuropediatrics 48:247–261. https://doi.org/10.1055/s-0037-1604154

    Article  PubMed  Google Scholar 

  33. Shashi V, Geist J, Lee Y et al (2019) Heterozygous variants in MYBPC1 are associated with an expanded neuromuscular phenotype beyond arthrogryposis. In Press, Hum Mutation

    Google Scholar 

  34. Stavusis J, Lace B, Schäfer J et al (2019) Novel mutations in MYBPC1 are associated with myogenic tremor and mild myopathy. Ann Neurol. https://doi.org/10.1002/ana.25494

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tajsharghi H, Stibrant Sunnerhagen K, Darin N et al (2004) Induced shift in myosin heavy chain expression in myosin myopathy by endurance training. J Neurol 251:179–183. https://doi.org/10.1007/s00415-004-0295-5

    CAS  Article  PubMed  Google Scholar 

  36. Uhlen M, Fagerberg L, Hallstrom BM et al (2015) Tissue-based map of the human proteome. Science(80-) 347:1260419. https://doi.org/10.1126/science.1260419

    CAS  Article  Google Scholar 

  37. Wang L, Geist J, Grogan A et al (2018) Thick filament protein network, functions, and disease association. Comprehensive physiology. Wiley, Hoboken, pp 631–709

    Google Scholar 

  38. Weber FE, Vaughan KT, Reinach FC, Fischman DA (1993) Complete sequence of human fast-type and slow type muscle myosin binding protein C (MyBP-C): differential expression, conserved domain structure and chromosome assignment. Eur J Biochem 216:661–669. https://doi.org/10.1111/j.1432-1033.1993.tb18186.x

    CAS  Article  PubMed  Google Scholar 

  39. Weterman MAJ, Barth PG, van Spaendonck-Zwarts KY et al (2013) Recessive MYL2 mutations cause infantile type I muscle fibre disease and cardiomyopathy. Brain 136:282–293. https://doi.org/10.1093/brain/aws293

    Article  PubMed  Google Scholar 

  40. Wiedemar N, Riedi A-K, Jagannathan V et al (2015) Genetic abnormalities in a calf with congenital increased muscular tonus. J Vet Intern Med 29:1418–1421. https://doi.org/10.1111/jvim.13599

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Wimberly B, Chazin WJ, Thulin E (1995) Characterization of the N-terminal half-saturated state of calbindin D9k: NMR studies of the N56A mutant. Protein Sci 4:1045–1055. https://doi.org/10.1002/pro.5560040603

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Wissel J, Harlizuis B, Richter A et al (1997) A new tremor mutant in the pietrain pig: an animal model of orthostatic tremor? Clinical and neurophysiological observations. Mov Disord 12:743–746. https://doi.org/10.1002/mds.870120519

    CAS  Article  PubMed  Google Scholar 

Internet resources

  1. Human Protein Atlas available from www.proteinatlas.org

Download references

Acknowledgments

This work was supported by the Fulbright Scholar Program (to JS), NIH (Training Program in Muscle Biology, T32 AR007592-17 to J.G. and R21AR072981 to A.K.K.), and the Muscular Dystrophy Association (Research Grant 313579 to A.K.K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Kontrogianni-Konstantopoulos.

Ethics declarations

Conflict of interest

The authors have no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stavusis, J., Geist, J. & Kontrogianni-Konstantopoulos, A. Sarcomeric myopathies associated with tremor: new insights and perspectives. J Muscle Res Cell Motil 41, 285–295 (2020). https://doi.org/10.1007/s10974-019-09559-1

Download citation

Keywords

  • Sarcomeric genes
  • Congenital myopathy
  • Muscle weakness
  • Hypotonia
  • Tremor