Skip to main content

Advertisement

Log in

mRNA expression characteristics are different in irreversibly atrophic intrinsic muscles of the forepaw compared with reversibly atrophic biceps in a rat model of obstetric brachial plexus palsy (OBPP)

  • Original Article
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

In obstetric brachial plexus palsy (OBPP), irreversible muscle atrophy occurs much faster in intrinsic muscles of the hand than in the biceps. To elucidate the mechanisms involved, mRNA expression profiles of denervated intrinsic muscles of the forepaw (IMF) and denervated biceps were determined by microarray using the rat model of OBPP where atrophy of IMF is irreversible while atrophy of biceps is reversible. Relative to contralateral control, 446 dysregulated mRNAs were detected in denervated IMF and mapped to 51 KEGG pathways, and 830 dysregulated mRNAs were detected in denervated biceps and mapped to 52 KEGG pathways. In denervated IMF, 10 of the pathways were related to muscle regulation; six with down-regulated and one with up-regulated mRNAs. The remaining three pathways had both up- and down-regulated mRNAs. In denervated biceps, 13 of the pathways were related to muscle regulation, six with up-regulated and seven with down-regulated mRNAs. Five of the pathways with up-regulated mRNAs were related to regrowth and differentiation of muscle cells. Among the 23 pathways with dysregulated mRNAs, 13 were involved in regulation of neuromuscular junctions. Our results demonstrated that mRNAs expression characteristics in irreversibly atrophic denervated IMF were different from those in reversibly atrophic denervated biceps; dysregulated mRNAs in IMF were associated with inactive pathways of muscle regulation, and in biceps they were associated with active pathways of regrowth and differentiation. Lack of self-repair potential in IMF may be a major reason why atrophy of IMF becomes irreversible much faster than atrophy of biceps after denervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alway SE (2006) Control of muscle size during disuse, disease, and aging. Int J Sports Med 27:94–99

    Article  PubMed  Google Scholar 

  • Bonen A, Dyck DJ, Ibrahimi A et al (1999) Muscle contractile activity increases fatty acid metabolism and transport and FAT/CD36. Am J Physiol-Endoc Metab 276:642–649

    Google Scholar 

  • Boome RS (2000) Traumatic branchial plexus injury. In: Gupta A, Kay SPJ, Scheker LR (eds) The growing hand: diagnosis and management of the upper extremity in children. Mosby, London, pp 653–655

    Google Scholar 

  • Caroni P, Schneider C (1994) Signaling by insulin-like growth factors in paralyzed skeletal muscle: rapid induction of IGF1 expression in muscle fibers and prevention of interstitial cell proliferation by IGF-BP5 and IGF-BP4. J Neurosci 14:3378–3388

    CAS  PubMed  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  CAS  PubMed  Google Scholar 

  • Chuang DC, Mardini S, Ma HS (2005) Surgical strategy for infant obstetrical brachial plexus palsy: experiences at Chang Gung Memorial Hospital. Plast Reconstr Surg 116:132–42; discussion 43–44

  • Cisternas P, Henriquez JP, Brandan E et al (2014) Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis. Mol Neurobiol 49:574–589

    Article  CAS  PubMed  Google Scholar 

  • Da Cruz S, Parone PA, Lopes VS et al (2012) Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS. Cell Metab 15:778–786

    Article  PubMed  PubMed Central  Google Scholar 

  • Dionyssiou MG, Salma J, Bevzyuk M et al (2013) Krüppel-like factor 6 (KLF6) promotes cell proliferation in skeletal myoblasts in response to TGFβ/Smad3 signaling. Skelet Muscle 3:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanzani A, Conraads VM, Penna F et al (2012) Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 3:163–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Flück M, Carson JA, Gordon SE et al (1999) Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle. Am J Physiol-Cell Physiol 277:C152–C162

    Google Scholar 

  • Fu AKY, Cheung ZH, Ip NY (2008) β-catenin in reverse action. Nat Neurosci 11:244–246

    Article  CAS  PubMed  Google Scholar 

  • Getchell TV, Peng X, Green CP et al (2004) In silico analysis of gene expression profiles in the olfactory mucosae of aging senescence-accelerated mice. J Neurosci Res 77:430–452

    Article  CAS  PubMed  Google Scholar 

  • Jordán-Álvarez S, Fouquet W, Sigrist SJ et al (2012) Presynaptic PI3K activity triggers the formation of glutamate receptors at neuromuscular terminals of Drosophila. J Cell Sci 125:3621–3629

    Article  PubMed  Google Scholar 

  • Kelley D, Mitrakou A, Marsh H et al (1988) Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J Clin Investig 81:1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinedinst S, Wang X, Xiong X et al (2013) Independent pathways downstream of the Wnd/DLK MAPKKK regulate synaptic structure, axonal transport, and injury signaling. J Neurosci 33:12764–12778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Shen J, Garrett JP et al (2007) Gene expression of myogenic regulatory factors, nicotinic acetylcholine receptor subunits, and GAP-43 in skeletal muscle following denervation in a rat model. J Orthop Res 25:1498–1505

    Article  CAS  PubMed  Google Scholar 

  • Machida M, Takeda K, Yokono H et al (2012) Reduction of ribosome biogenesis with activation of the mTOR pathway in denervated atrophic muscle. J Cell Physiol 227:1569–1576

    Article  CAS  PubMed  Google Scholar 

  • Ong LL, Kim N, Mima T et al (1998) Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity. Dev Biol 193:1–9

    Article  CAS  PubMed  Google Scholar 

  • Pan F, Chen L, Ding F et al (2015) Expression profiles of MiRNAs for intrinsic musculature of the forepaw and biceps in the rat model simulating irreversible muscular atrophy of obstetric brachial plexus palsy. Gene 565:268–274

    Article  CAS  PubMed  Google Scholar 

  • Pollari E, Goldsteins G, Bart G et al (2014) The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis. Front Cell Neurosci 8:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397

    Article  CAS  PubMed  Google Scholar 

  • Prokop A, Landgraf M, Rushton E et al (1996) Presynaptic development at the Drosophila neuromuscular junction: assembly and localization of presynaptic active zones. Neuron 17:617–626

    Article  CAS  PubMed  Google Scholar 

  • Rawson JM, Lee M, Kennedy EL et al (2003) Drosophila neuromuscular synapse assembly and function require the TGF-b type I receptor saxophone and the transcription factor Mad. J Neurobiol 55:134–150

    Article  CAS  PubMed  Google Scholar 

  • Redshaw Z, Sweetman D, Loughna PT (2014) The effects of age upon the expression of three miRNAs in muscle stem cells isolated from two different porcine skeletal muscles. Differentiation 88:117–123

    Article  CAS  PubMed  Google Scholar 

  • Röder IV, Petersen Y, Choi KR et al (2008) Role of Myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. Plos One. doi:10.1371/journal.pone.0003871

    PubMed  PubMed Central  Google Scholar 

  • Roganovic Z (2005) Missile-caused complete lesions of the peroneal nerve and peroneal division of the sciatic nerve: results of 157 repairs. Neurosurgery 57:1201–1212

    Article  PubMed  Google Scholar 

  • Rouger K, Le Cunff M, Steenman M et al (2002) Global/temporal gene expression in diaphragm and hindlimb muscles of dystrophin-deficient (mdx) mice. Am J Physiol-Cell Physiol 283:C773–C784

    Article  CAS  PubMed  Google Scholar 

  • Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389–442

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Dyar KA, Ciciliot S et al (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280:4294–4314

    Article  CAS  PubMed  Google Scholar 

  • Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96:2293–2300

    Article  PubMed  Google Scholar 

  • Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci 100:15924–15929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenmakers AJ (1997) Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism. Exerc Sport Sci Rev 26:287–314

    Google Scholar 

  • Wei Y, Chen K, Whaley-Connell AT et al (2008) Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol-Regul, Integr Comp Physiol 294:R673–R680

    Article  CAS  Google Scholar 

  • Wu H, Naya FJ, McKinsey TA et al (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19:1963–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JX, Chen L, Ding F et al (2013) A rat model study of atrophy of denervated musculature of the hand being faster than that of denervated muscles of the arm. J Muscle Res Cell Motil 34:15–22

    Article  PubMed  Google Scholar 

  • Yatsenko AS, Shcherbata HR (2014) Drosophila miR-9a targets the ECM receptor Dystroglycan to canalize myotendinous junction formation. Dev Cell 28:335–348

    Article  CAS  PubMed  Google Scholar 

  • Yeow K, Cabane C, Turchi L et al (2002) Increased MAPK signaling during in vitro muscle wounding. Biochem Biophys Res Commun 293:112–119

    Article  CAS  PubMed  Google Scholar 

  • Zafeiriou DI (2004) Primitive reflexes and postural reactions in the neurodevelopmental examination. Pediatr Neurol 31:1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research project was funded by the Chinese 973 Project Planning (2014CB542203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Chen or Fei Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Jx., Chen, L., Ding, F. et al. mRNA expression characteristics are different in irreversibly atrophic intrinsic muscles of the forepaw compared with reversibly atrophic biceps in a rat model of obstetric brachial plexus palsy (OBPP). J Muscle Res Cell Motil 37, 17–25 (2016). https://doi.org/10.1007/s10974-016-9442-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-016-9442-8

Keywords

Navigation