Journal of Muscle Research and Cell Motility

, Volume 34, Issue 5–6, pp 379–393 | Cite as

Quantifying SOCE fluorescence measurements in mammalian muscle fibres. The effects of ryanodine and osmotic shocks

  • Pura Bolaños
  • Alis Guillen
  • Adriana Gámez
  • Carlo Caputo
Original Paper


We have quantified Ca2+ entry through store operated calcium channels in mice muscle fibres, measuring the rates of change of myoplasmic [Ca2+], d[Ca2+]myo/dt, and of Ca2+ removal, d[Ca2+]Removal/dt, turning store operated calcium entry (SOCE) ON, and OFF, by switching on or off external Ca2+. In depleted fibres, poisoned with 10 μM cyclopiazonic acid SOCE influx was about 3 μM/s. Ryanodine (50 μM) caused a robust, nifedipine (50 μM) independent, increase in SOCE activation to 8.6 μM/s. Decreasing medium osmolarity from 300 to 220 mOsm/L, decreased SOCE to 0.9 μM/s, while increasing osmolarity from 220 to 400 mOsm/L potentiated SOCE to 43.6 μM/s. Ryanodine inhibited the effects of hypotonicity. Experiments using 2-aminoethoxydiphenyl borate, nifedipine, or Mn2+ quenching, strongly suggest that the increased [Ca2+]myo by ryanodine or hypertonic shock is mediated by potentiated SOCE activation. The Ca2+ response decay, quantified by d[Ca2+]Removal/dt, indicates a robust residual Ca2+ removal mechanism in sarco-endoplasmic reticulum calcium ATPase poisoned fibres. SOCE high sensitivity to osmotic shocks, or to ryanodine receptor (RyR) binding, suggests its high dependency on the structural relationship between its molecular constituents, Orai1 and stromal interaction molecule and the sarcoplasmic reticulum and plasma membranes, in the triadic junctional region, where RyRs, are conspicuously present. This study demonstrates that SOCE machinery is highly sensitive to structural changes caused by binding of an agonist to its receptor or by imposed osmotical volume changes.


Mammalian skeletal muscle SOCE Ryanodine receptors Osmotic shocks 



We thank Dr. J. C. Calderón for useful advice reading the manuscript. This work was supported by IVIC.


  1. Allard B, Couchoux H, Pouvreau S, Jacquemond V (2006) Sarcoplasmic reticulum Ca2+ release and depletion fail to affect sarcolemmal ion channel activity in mouse skeletal muscle. J Physiol 575:69–81PubMedCrossRefGoogle Scholar
  2. Apostol S, Ursu D, Lehmann-Horn F, Melzer W (2009) Local calcium signals induced by hyper-osmotic stress in mammalian skeletal muscle cells. J Muscle Res Cell Motil 30:97–109PubMedCrossRefGoogle Scholar
  3. Arakawa N, Sakaue M, Yokoyama I, Hashimoto H, Koyama Y, Baba A, Matsuda T (2000) KB-R7943 inhibits store-operated Ca(2+) entry in cultured neurons and astrocytes. Biochem Biophys Res Commun 279:354–357PubMedCrossRefGoogle Scholar
  4. Bekoff A, Betz WJ (1977) Physiological properties of dissociated muscle fibres obtained from innervated and denervated adult rat muscle. J Physiol 271:25–40PubMedGoogle Scholar
  5. Bennett DL, Bootman MD, Berridge MJ, Cheek TR (1998) Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem J 329(Pt 2):349–357PubMedGoogle Scholar
  6. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312(Pt 1):1–11PubMedGoogle Scholar
  7. Bird GS, DeHaven WI, Smyth JT, Putney JW Jr (2008) Methods for studying store-operated calcium entry. Methods 46:204–212PubMedCrossRefGoogle Scholar
  8. Bolaños P, Guillen A, Rojas H, Boncompagni S, Caputo C (2008) The use of CalciumOrange-5N as a specific marker of mitochondrial Ca2+ in mouse skeletal muscle fibers. Pflugers Arch 455:721–731PubMedCrossRefGoogle Scholar
  9. Bolaños P, Guillen A, DiPolo R, Caputo C (2009) Factors affecting SOCE activation in mammalian skeletal muscle fibers. J Physiol Sci 59:317–328PubMedCrossRefGoogle Scholar
  10. Boncompagni S, Rossi AE, Micaroni M, Beznoussenko GV, Polishchuk RS, Dirksen RT, Protasi F (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20:1058–1067PubMedCrossRefGoogle Scholar
  11. Caputo C (1968) Volume and twitch tension changes in single muscle fibers in hypertonic solutions. J Gen Physiol 52:793–809PubMedCrossRefGoogle Scholar
  12. Caputo C, Bolaños P, Gonzalez A (2004) Inactivation of Ca2+ transients in amphibian and mammalian muscle fibres. J Muscle Res Cell Motil 25:315–328PubMedCrossRefGoogle Scholar
  13. Carroll SL, Klein M, Schneider MF (1995) Calcium transients in intact rat skeletal muscle fibers in agarose gel. Am J Physiol 269:C28–C34PubMedGoogle Scholar
  14. DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298PubMedCrossRefGoogle Scholar
  15. Dirksen RT (2009) Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol 587:3139–3147PubMedCrossRefGoogle Scholar
  16. Ducret T, Vandebrouck C, Cao ML, Lebacq J, Gailly P (2006) Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. J Physiol 575:913–924PubMedCrossRefGoogle Scholar
  17. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185PubMedCrossRefGoogle Scholar
  18. Franco-Obregon A Jr, Lansman JB (1994) Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481(Pt 2):299–309PubMedGoogle Scholar
  19. Franzini-Armstrong C, Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77:699–729PubMedGoogle Scholar
  20. Gailly P (2012) TRP channels in normal and dystrophic skeletal muscle. Curr Opin Pharmacol 12:326–334PubMedCrossRefGoogle Scholar
  21. Gailly P, Boland B, Himpens B, Casteels R, Gillis JM (1993) Critical evaluation of cytosolic calcium determination in resting muscle fibres from normal and dystrophic (mdx) mice. Cell Calcium 14:473–483PubMedCrossRefGoogle Scholar
  22. Gomis A, Soriano S, Belmonte C, Viana F (2008) Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol 586:5633–5649PubMedCrossRefGoogle Scholar
  23. Gonzalez A, Caputo C (1996) Ryanodine interferes with charge movement repriming in amphibian skeletal muscle fibers. Biophys J 70:376–382PubMedCrossRefGoogle Scholar
  24. Gonzalez Narvaez AA, Castillo A (2007) Ca2+ store determines gating of store operated calcium entry in mammalian skeletal muscle. J Muscle Res Cell Motil 28:105–113PubMedCrossRefGoogle Scholar
  25. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  26. Hirata Y, Brotto M, Weisleder N, Chu Y, Lin P, Zhao X, Thornton A, Komazaki S, Takeshima H, Ma J, Pan Z (2006) Uncoupling store-operated Ca2+ entry and altered Ca2+ release from sarcoplasmic reticulum through silencing of junctophilin genes. Biophys J 90:4418–4427PubMedCrossRefGoogle Scholar
  27. Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356PubMedCrossRefGoogle Scholar
  28. Hoth M, Fasolato C, Penner R (1993) Ion channels and calcium signaling in mast cells. Ann N Y Acad Sci 707:198–209PubMedCrossRefGoogle Scholar
  29. Kiselyov KI, Shin DM, Wang Y, Pessah IN, Allen PD, Muallem S (2000) Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol Cell 6:421–431PubMedCrossRefGoogle Scholar
  30. Kiselyov K, Shin DM, Shcheynikov N, Kurosaki T, Muallem S (2001) Regulation of Ca2+-release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells. Biochem J 360:17–22PubMedCrossRefGoogle Scholar
  31. Klein MG, Simon BJ, Szucs G, Schneider MF (1988) Simultaneous recording of calcium transients in skeletal muscle using high- and low-affinity calcium indicators. Biophys J 53:971–988PubMedCrossRefGoogle Scholar
  32. Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol 533:185–199PubMedCrossRefGoogle Scholar
  33. Launikonis BS, Rios E (2007) Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J Physiol 583:81–97PubMedCrossRefGoogle Scholar
  34. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241PubMedCrossRefGoogle Scholar
  35. Liu X, Singh BB, Ambudkar IS (2003) TRPC1 is required for functional store-operated Ca2+ channels. Role of acidic amino acid residues in the S5-S6 region. J Biol Chem 278:11337–11343PubMedCrossRefGoogle Scholar
  36. Liu X, Ong HL, Pani B, Johnson K, Swaim WB, Singh B, Ambudkar I (2010) Effect of cell swelling on ER/PM junctional interactions and channel assembly involved in SOCE. Cell Calcium 47:491–499PubMedCrossRefGoogle Scholar
  37. Luik RM, Wu MM, Buchanan J, Lewis RS (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825PubMedCrossRefGoogle Scholar
  38. Lyfenko AD, Dirksen RT (2008) Differential dependence of store-operated and excitation-coupled Ca2+ entry in skeletal muscle on STIM1 and Orai1. J Physiol 586:4815–4824PubMedCrossRefGoogle Scholar
  39. Ma J, Pan Z (2003) Junctional membrane structure and store operated calcium entry in muscle cells. Front Biosci 8:d242–d255PubMedCrossRefGoogle Scholar
  40. Manno C, Sztretye M, Figueroa L, Allen PD, Rios E (2013) Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle. J Physiol 591:423–442PubMedCrossRefGoogle Scholar
  41. McElroy SP, Gurney AM, Drummond RM (2008) Pharmacological profile of store-operated Ca(2+) entry in intrapulmonary artery smooth muscle cells. Eur J Pharmacol 584:10–20PubMedCrossRefGoogle Scholar
  42. Meissner G (1986) Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261:6300–6306PubMedGoogle Scholar
  43. Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75PubMedCrossRefGoogle Scholar
  44. Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, Ma J (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4:379–383PubMedCrossRefGoogle Scholar
  45. Pan Z, Zhao X, Brotto M (2012) Fluorescence-based measurement of store-operated calcium entry in live cells: from cultured cancer cell to skeletal muscle fiber. J Vis Exp 60:3415Google Scholar
  46. Paolini C, Fessenden JD, Pessah IN, Franzini-Armstrong C (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci USA 101:12748–12752PubMedCrossRefGoogle Scholar
  47. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930PubMedGoogle Scholar
  48. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810PubMedCrossRefGoogle Scholar
  49. Pickering JD, White E, Duke AM, Steele DS (2009) DHPR activation underlies SR Ca2+ release induced by osmotic stress in isolated rat skeletal muscle fibers. J Gen Physiol 133:511–524PubMedCrossRefGoogle Scholar
  50. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233PubMedCrossRefGoogle Scholar
  51. Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12PubMedCrossRefGoogle Scholar
  52. Putney JW (2010) Pharmacology of store-operated calcium channels. Mol Interv 10:209–218PubMedCrossRefGoogle Scholar
  53. Rios E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720PubMedCrossRefGoogle Scholar
  54. Robin G, Allard B (2012) Dihydropyridine receptors actively control gating of ryanodine receptors in resting mouse skeletal muscle fibres. J Physiol 590:6027–6036PubMedCrossRefGoogle Scholar
  55. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman KA (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445PubMedCrossRefGoogle Scholar
  56. Rossi AE, Boncompagni S, Wei L, Protasi F, Dirksen RT (2011) Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle. Am J Physiol Cell Physiol 301:C1128–C1139PubMedCrossRefGoogle Scholar
  57. Rudolf R, Mongillo M, Magalhaes PJ, Pozzan T (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536PubMedCrossRefGoogle Scholar
  58. Sampieri A, Diaz-Munoz M, Antaramian A, Vaca L (2005) The foot structure from the type 1 ryanodine receptor is required for functional coupling to store-operated channels. J Biol Chem 280:24804–24815PubMedCrossRefGoogle Scholar
  59. Smith JS, Imagawa T, Ma J, Fill M, Campbell KP, Coronado R (1988) Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol 92:1–26PubMedCrossRefGoogle Scholar
  60. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160PubMedCrossRefGoogle Scholar
  61. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349PubMedCrossRefGoogle Scholar
  62. Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591PubMedCrossRefGoogle Scholar
  63. Srikanth S, Jew M, Kim KD, Yee MK, Abramson J, Gwack Y (2012) Junctate is a Ca2+-sensing structural component of Orai1 and stromal interaction molecule 1 (STIM1). Proc Natl Acad Sci USA 109:8682–8687PubMedCrossRefGoogle Scholar
  64. Suchyna TM, Sachs F (2007) Mechanosensitive channel properties and membrane mechanics in mouse dystrophic myotubes. J Physiol 581:369–387PubMedCrossRefGoogle Scholar
  65. Tong J, Du GG, Chen SR, MacLennan DH (1999) HEK-293 cells possess a carbachol- and thapsigargin-sensitive intracellular Ca2+ store that is responsive to stop-flow medium changes and insensitive to caffeine and ryanodine. Biochem J 343:39–44PubMedCrossRefGoogle Scholar
  66. Vandebrouck C, Duport G, Raymond G, Cognard C (2002a) Hypotonic medium increases calcium permeant channels activity in human normal and dystrophic myotubes. Neurosci Lett 323:239–243PubMedCrossRefGoogle Scholar
  67. Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002b) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096PubMedCrossRefGoogle Scholar
  68. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16:2073–2079PubMedCrossRefGoogle Scholar
  69. Wang X, Weisleder N, Collet C, Zhou J, Chu Y, Hirata Y, Zhao X, Pan Z, Brotto M, Cheng H, Ma J (2005) Uncontrolled calcium sparks act as a dystrophic signal for mammalian skeletal muscle. Nat Cell Biol 7:525–530PubMedCrossRefGoogle Scholar
  70. Yarotsky V, Dirksen RT (2012) Temperature and RyR1 regulate the activation rate of store-operated Ca(2)+ entry current in myotubes. Biophys J 103:202–211CrossRefGoogle Scholar
  71. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905PubMedCrossRefGoogle Scholar
  72. Zhao X, Weisleder N, Han X, Pan Z, Parness J, Brotto M, Ma J (2006) Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J Biol Chem 281:33477–33486PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Pura Bolaños
    • 1
  • Alis Guillen
    • 1
  • Adriana Gámez
    • 1
  • Carlo Caputo
    • 1
  1. 1.Laboratorio de Fisiología Celular, Centro de Biofísica y BioquímicaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations