Sarcolemmal ion channels in dystrophin-deficient skeletal muscle fibres

  • Bruno Allard
Original Paper


Duchenne muscular dystrophy (DMD) is a genetic disease caused by mutations in the dystrophin gene and characterized by progressive skeletal muscle degeneration. A current hypothesis suggests that degeneration of dystrophin-deficient skeletal muscle results from a chronic intracellular Ca2+ overload. Ca2+ handling in skeletal muscle is tightly controlled by the membrane potential which is set by sarcolemmal ion channels activity. Also, with regard to the subsarcolemmal localization of dystrophin, it is reasonable to enquire if the distribution and function of ion channels might be affected by the absence of dystrophin. This paper briefly summarizes the current knowledge of the properties of sarcolemmal ion channels in fully differentiated dystrophin-deficient skeletal muscle fibres.


Dystrophin Duchenne muscular dystrophy mdx mouse Skeletal muscle fibre Ion channels Electrophysiology Patch clamp Voltage clamp Calcium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by grants from the Université Lyon 1, the Centre National de la Recherche Scientifique (CNRS), the Association Française contre les Myopathies and the Agence Nationale de la Recherche. I thank Dr. V. Jacquemond for helpful comments on the manuscript.


  1. Allard B, Lazdunski M, Rougier O (1995) Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg2+ and pH. J Physiol 485:283–296PubMedGoogle Scholar
  2. Allard B, Rougier O (1997) Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice. J Physiol 498:319–325PubMedGoogle Scholar
  3. Allard B, Couchoux H, Pouvreau S and Jacquemond V (2006) Sarcoplasmic reticulum Ca2+ -release and -depletion fail to affect sarcolemmal ion channel activity in mouse skeletal muscle. J Physiol, in pressGoogle Scholar
  4. Blake DJ, Weir A, Newey SE, Davies K (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329PubMedGoogle Scholar
  5. Brennan C, Henderson LP (1993) Single channel properties of synaptic acetylcholine receptors in dystrophic fibers. Muscle Nerve 16:513–519PubMedCrossRefGoogle Scholar
  6. Carlson CG, Roshek DM (2001) Adult dystrophic (mdx) endplates exhibit reduced quantal size and enhanced quantal variation. Pflügers Arch 442:369–375PubMedCrossRefGoogle Scholar
  7. Collet C, Csernoch L, Jacquemond V (2003) Intramembrane charge movement and L-type calcium current in skeletal muscle fibers isolated from control and mdx mice. Biophys J 84:251–265PubMedGoogle Scholar
  8. De Backer F, Vandebrouck C, Gailly P, Gillis JM (2002) Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J␣Physiol 542:855–863PubMedCrossRefGoogle Scholar
  9. De Luca A, Pierno S, Camerino DC (1995) Changes of membrane electrical properties in extensor digitorum longus muscle from dystrophic (mdx) mice. Muscle Nerve 18:1196–1198PubMedCrossRefGoogle Scholar
  10. De Luca A, Pierno S, Camerino DC (1997) Electrical properties of diaphragm and EDL muscles during the life of dystrophic mice. Am J Physiol 272:C333-C340PubMedGoogle Scholar
  11. De Luca A, Pierno S, Camerino C, Cocchi D, Camerino DC (1999) Higher content of insulin-like growth factor-I in dystrophic mdx mouse: potential role in the spontaneous regeneration through an electrophysiological investigation of muscle function. Neuromuscul Disord 9:11–18PubMedCrossRefGoogle Scholar
  12. Franco-Obregon A, Lansman JB (1994) Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481:299–309PubMedGoogle Scholar
  13. Friedrich O, Both M, Gillis JM, Chamberlain JS, Fink RH (2004) Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol 555:251–265PubMedCrossRefGoogle Scholar
  14. Gailly P (2002) New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim Biophys Acta 1600:38–44PubMedGoogle Scholar
  15. Gillis JM (1999) Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J␣Muscle Res Cell Motil 20:605–625PubMedCrossRefGoogle Scholar
  16. Haws CM, Lansman JB (1991) Developmental regulation of mechanosensitive calcium channels in skeletal muscle from normal and mdx mice. Proc Biol Sci 245:173–177PubMedGoogle Scholar
  17. Head SI (1993) Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J Physiol 469:11–19PubMedGoogle Scholar
  18. Hocherman SD, Bezanilla F (1996) A patch-clamp study of delayed rectifier currents in skeletal muscle of control and mdx mice. J Physiol 493:113–128PubMedGoogle Scholar
  19. Hollingworth S, Marshall MW, Robson E (1990) Excitation-contraction coupling in normal and mdx mice. Muscle Nerve 13:16–20PubMedCrossRefGoogle Scholar
  20. Hopf FW, Turner PR, Denetclaw WF, Reddy P, Steinhardt RA (1996) A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle. Am J Physiol 271:C1325-C1339PubMedGoogle Scholar
  21. Költgen D, Franke C (1992) Acetylcholine activates two types of ion channels in sarcolemma from adult muscular dystrophic (mdx) mice. Neurosci Lett 137:1–4PubMedCrossRefADSGoogle Scholar
  22. Költgen D, Franke C (1994) The coexistence of embryonic and adult acetylcholine receptors in sarcolemma of mdx dystrophic mouse muscle: an effect of regeneration or muscular dystrophy? Neurosci Lett 173:79–82PubMedCrossRefGoogle Scholar
  23. Lyons PR, Slater CR (1991) Structure and function of the neuromuscular junction in young adult mdx mice. J Neurocytol 20:969–981PubMedCrossRefGoogle Scholar
  24. Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955CrossRefADSGoogle Scholar
  25. Mallouk N, Allard B (2002) Ca2+ influx and opening of Ca2+-activated K+ channels in muscle fibers from control and mdx mice. Biophys J 82:3012–3021PubMedCrossRefGoogle Scholar
  26. Mathes C, Bezanilla F, Weiss RE (1991) Sodium current and membrane potential in EDL muscle fibers from normal and dystrophic (mdx) mice. Am J Physiol 261:718–725Google Scholar
  27. Nagel A, Lehmann-Horn F, Engel AG (1990) Neuromuscular transmission in the mdx mouse. Muscle Nerve 13:742–749PubMedCrossRefGoogle Scholar
  28. Ribaux P, Bleicher F, Couble ML, Amsellem J, Cohen SA, Berthier C, Blaineau S (2001) Voltage-gated sodium channel (SkM1) content in dystrophin-deficient muscle. Pflügers Arch 441:746–755PubMedCrossRefGoogle Scholar
  29. Rüdel R, Brinkmeier H (2002) 76th ENMC International Workshop: pathophysiology and therapy in the mdx mouse 21–23 January 2000, Naarden, The Netherlands. Neuromuscul Disord 12:415–420PubMedCrossRefGoogle Scholar
  30. Rüegg UT, Nicolas-Metral V, Challet C, Bernard-Helary K, Dorchies OM, Wagner S, Buetler TM (2002) Pharmacological control of cellular calcium handling in dystrophic skeletal muscle. Neuromuscul Disord 12(Suppl 1):S155–S161PubMedCrossRefGoogle Scholar
  31. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–538PubMedCrossRefADSGoogle Scholar
  32. Turner PR, Westwood T, Regan CM, Steinhardt RA (1988) Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335:735–738PubMedCrossRefADSGoogle Scholar
  33. Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096PubMedCrossRefGoogle Scholar
  34. Woods CE, Novo D, DiFranco M, Vergara JL (2004) The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol 557:59–75PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Physiologie Intégrative, Cellulaire et Moléculaire, UMR CNRS 5123Université C. Bernard Lyon 1Villeurbanne cedexFrance

Personalised recommendations