Skip to main content
Log in

Sarcolemmal ion channels in dystrophin-deficient skeletal muscle fibres

  • Original Paper
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is a genetic disease caused by mutations in the dystrophin gene and characterized by progressive skeletal muscle degeneration. A current hypothesis suggests that degeneration of dystrophin-deficient skeletal muscle results from a chronic intracellular Ca2+ overload. Ca2+ handling in skeletal muscle is tightly controlled by the membrane potential which is set by sarcolemmal ion channels activity. Also, with regard to the subsarcolemmal localization of dystrophin, it is reasonable to enquire if the distribution and function of ion channels might be affected by the absence of dystrophin. This paper briefly summarizes the current knowledge of the properties of sarcolemmal ion channels in fully differentiated dystrophin-deficient skeletal muscle fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard B, Lazdunski M, Rougier O (1995) Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg2+ and pH. J Physiol 485:283–296

    PubMed  CAS  Google Scholar 

  • Allard B, Rougier O (1997) Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice. J Physiol 498:319–325

    PubMed  CAS  Google Scholar 

  • Allard B, Couchoux H, Pouvreau S and Jacquemond V (2006) Sarcoplasmic reticulum Ca2+ -release and -depletion fail to affect sarcolemmal ion channel activity in mouse skeletal muscle. J Physiol, in press

  • Blake DJ, Weir A, Newey SE, Davies K (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82:291–329

    PubMed  CAS  Google Scholar 

  • Brennan C, Henderson LP (1993) Single channel properties of synaptic acetylcholine receptors in dystrophic fibers. Muscle Nerve 16:513–519

    Article  PubMed  CAS  Google Scholar 

  • Carlson CG, Roshek DM (2001) Adult dystrophic (mdx) endplates exhibit reduced quantal size and enhanced quantal variation. Pflügers Arch 442:369–375

    Article  PubMed  CAS  Google Scholar 

  • Collet C, Csernoch L, Jacquemond V (2003) Intramembrane charge movement and L-type calcium current in skeletal muscle fibers isolated from control and mdx mice. Biophys J 84:251–265

    PubMed  CAS  Google Scholar 

  • De Backer F, Vandebrouck C, Gailly P, Gillis JM (2002) Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J␣Physiol 542:855–863

    Article  PubMed  CAS  Google Scholar 

  • De Luca A, Pierno S, Camerino DC (1995) Changes of membrane electrical properties in extensor digitorum longus muscle from dystrophic (mdx) mice. Muscle Nerve 18:1196–1198

    Article  PubMed  Google Scholar 

  • De Luca A, Pierno S, Camerino DC (1997) Electrical properties of diaphragm and EDL muscles during the life of dystrophic mice. Am J Physiol 272:C333-C340

    PubMed  Google Scholar 

  • De Luca A, Pierno S, Camerino C, Cocchi D, Camerino DC (1999) Higher content of insulin-like growth factor-I in dystrophic mdx mouse: potential role in the spontaneous regeneration through an electrophysiological investigation of muscle function. Neuromuscul Disord 9:11–18

    Article  PubMed  Google Scholar 

  • Franco-Obregon A, Lansman JB (1994) Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481:299–309

    PubMed  CAS  Google Scholar 

  • Friedrich O, Both M, Gillis JM, Chamberlain JS, Fink RH (2004) Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol 555:251–265

    Article  PubMed  CAS  Google Scholar 

  • Gailly P (2002) New aspects of calcium signaling in skeletal muscle cells: implications in Duchenne muscular dystrophy. Biochim Biophys Acta 1600:38–44

    PubMed  CAS  Google Scholar 

  • Gillis JM (1999) Understanding dystrophinopathies: an inventory of the structural and functional consequences of the absence of dystrophin in muscles of the mdx mouse. J␣Muscle Res Cell Motil 20:605–625

    Article  PubMed  CAS  Google Scholar 

  • Haws CM, Lansman JB (1991) Developmental regulation of mechanosensitive calcium channels in skeletal muscle from normal and mdx mice. Proc Biol Sci 245:173–177

    PubMed  CAS  Google Scholar 

  • Head SI (1993) Membrane potential, resting calcium and calcium transients in isolated muscle fibres from normal and dystrophic mice. J Physiol 469:11–19

    PubMed  CAS  Google Scholar 

  • Hocherman SD, Bezanilla F (1996) A patch-clamp study of delayed rectifier currents in skeletal muscle of control and mdx mice. J Physiol 493:113–128

    PubMed  CAS  Google Scholar 

  • Hollingworth S, Marshall MW, Robson E (1990) Excitation-contraction coupling in normal and mdx mice. Muscle Nerve 13:16–20

    Article  PubMed  CAS  Google Scholar 

  • Hopf FW, Turner PR, Denetclaw WF, Reddy P, Steinhardt RA (1996) A critical evaluation of resting intracellular free calcium regulation in dystrophic mdx muscle. Am J Physiol 271:C1325-C1339

    PubMed  CAS  Google Scholar 

  • Költgen D, Franke C (1992) Acetylcholine activates two types of ion channels in sarcolemma from adult muscular dystrophic (mdx) mice. Neurosci Lett 137:1–4

    Article  PubMed  ADS  Google Scholar 

  • Költgen D, Franke C (1994) The coexistence of embryonic and adult acetylcholine receptors in sarcolemma of mdx dystrophic mouse muscle: an effect of regeneration or muscular dystrophy? Neurosci Lett 173:79–82

    Article  PubMed  Google Scholar 

  • Lyons PR, Slater CR (1991) Structure and function of the neuromuscular junction in young adult mdx mice. J Neurocytol 20:969–981

    Article  PubMed  CAS  Google Scholar 

  • Mallouk N, Jacquemond V, Allard B (2000) Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci USA 97:4950–4955

    Article  CAS  ADS  Google Scholar 

  • Mallouk N, Allard B (2002) Ca2+ influx and opening of Ca2+-activated K+ channels in muscle fibers from control and mdx mice. Biophys J 82:3012–3021

    Article  PubMed  CAS  Google Scholar 

  • Mathes C, Bezanilla F, Weiss RE (1991) Sodium current and membrane potential in EDL muscle fibers from normal and dystrophic (mdx) mice. Am J Physiol 261:718–725

    Google Scholar 

  • Nagel A, Lehmann-Horn F, Engel AG (1990) Neuromuscular transmission in the mdx mouse. Muscle Nerve 13:742–749

    Article  PubMed  CAS  Google Scholar 

  • Ribaux P, Bleicher F, Couble ML, Amsellem J, Cohen SA, Berthier C, Blaineau S (2001) Voltage-gated sodium channel (SkM1) content in dystrophin-deficient muscle. Pflügers Arch 441:746–755

    Article  PubMed  CAS  Google Scholar 

  • Rüdel R, Brinkmeier H (2002) 76th ENMC International Workshop: pathophysiology and therapy in the mdx mouse 21–23 January 2000, Naarden, The Netherlands. Neuromuscul Disord 12:415–420

    Article  PubMed  Google Scholar 

  • Rüegg UT, Nicolas-Metral V, Challet C, Bernard-Helary K, Dorchies OM, Wagner S, Buetler TM (2002) Pharmacological control of cellular calcium handling in dystrophic skeletal muscle. Neuromuscul Disord 12(Suppl 1):S155–S161

    Article  PubMed  Google Scholar 

  • Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM (1991) The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352:536–538

    Article  PubMed  CAS  ADS  Google Scholar 

  • Turner PR, Westwood T, Regan CM, Steinhardt RA (1988) Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335:735–738

    Article  PubMed  CAS  ADS  Google Scholar 

  • Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Woods CE, Novo D, DiFranco M, Vergara JL (2004) The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol 557:59–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Université Lyon 1, the Centre National de la Recherche Scientifique (CNRS), the Association Française contre les Myopathies and the Agence Nationale de la Recherche. I thank Dr. V. Jacquemond for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Allard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allard, B. Sarcolemmal ion channels in dystrophin-deficient skeletal muscle fibres. J Muscle Res Cell Motil 27, 367–373 (2006). https://doi.org/10.1007/s10974-006-9083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-006-9083-4

Keywords

Navigation