Advertisement

Drosophila Rolling pebbles colocalises and putatively interacts with alpha-Actinin and the Sls isoform Zormin in the Z-discs of the sarcomere and with Dumbfounded/Kirre, alpha-Actinin and Zormin in the terminal Z-discs

  • NINA KREISKÖTHER
  • NINA REICHERT
  • DETLEV BUTTGEREIT
  • ALEXANDER HERTENSTEIN
  • KARL-FRIEDRICH FISCHBACH
  • RENATE RENKAWITZ-POHL
Article

Abstract

The rolling pebbles gene of Drosophila encodes two proteins, one of which, Rols7, is essential for myoblast fusion. In addition, Rols 7 is expressed during myofibrillogenesis and in the mature muscles. Here it overlaps with alpha-Actinin (α-Actn) and the N-terminus of D-Titin/Kettin/Zormin in the Z-line of the sarcomeres. In the attachment sites of the somatic muscles, Rols7 and the immunoglobulin superfamily protein Dumbfounded/Kin of irreC (Duf/Kirre) colocalise. As Duf/Kirre is detectable only transiently, it may be involved in establishing the first contact of the outgrowing muscle fiber to the epidermal attachment site. We propose that Rols7 and Duf/Kirre link the terminal Z-disc to the cell membrane by direct interaction. This is supported by the fact that in yeast two hybrid assays the tetratricopeptide repeat E (TPR E) of Rols7 shows interaction with the intracellular domain of Duf/Kirre. The colocalisation of Rols7 with α-Actn and with D-Titin/Kettin/Zormin in the Z-dics is reflected in␣interactions with different domains of Rols7 in this assay. In summary, these data show that besides the role in myoblast fusion, Rols7 is a scaffold protein during myofibrillogenesis and in the Z-line of the sarcomere as well as in the terminal Z-disc linking the muscle to the epidermal attachment sites.

Keywords

Attachment Site Ankyrin Repeat Muscle Attachment Body Wall Muscle Myoblast Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful for providing clones and antibodies to Belinda Bullard and Deborah Andrew. We thank Christiana Stute and Belinda Bullard for critical reading of the manuscript. We thank Ruth Hyland for excellent technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Re628/10-4 and Re628/14-1), the EU network of excellence MYORES, the Fonds der Chemischen Industrie to R.R.-P and the SFB 505 to K.F.F.

References

  1. Abmayr SM, Balagopalan L, Galletta B and Hong S-J (2005) Myogenesis and muscle development. In: Gilbert LI, Iatrou K and Gill SS (eds) Comprehensive Molecular Insect Science, Vol. 2: Development (pp. 1–32). Elsevier BVGoogle Scholar
  2. Artero R, Prokop A, Paricio N, Begemann G, Pueyo I, Mlodzik M, Perez-Alonso M, Baylies MK, (1998). The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2 Dev Biol 195: 131–143PubMedCrossRefGoogle Scholar
  3. Artero RD, Castanon I, Baylies MK, (2001). The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling Development 128: 4251–4264PubMedGoogle Scholar
  4. Baylies MK, Bate M, Ruiz-Gómez M, (1998). Myogenesis: a view from Drosophila Cell 93: 921–927PubMedCrossRefGoogle Scholar
  5. Bernstein SI, O’Donnell PT, Cripps RM, (1993). Molecular genetic analysis of muscle development, structure, and function in Drosophila Int Rev Cytol 143: 63–152PubMedCrossRefGoogle Scholar
  6. Bour BA, Chakravarti M, West JM, Abmayr SM, (2000). Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion Genes Dev 14: 1498–1511PubMedGoogle Scholar
  7. Brown NH, Gregory SL, Martin-Bermudo MD, (2000). Integrins as mediators of morphogenesis in Drosophila Dev Biol 223: 1–16PubMedCrossRefGoogle Scholar
  8. Bullard B, Burkart C, Labeit S and Leonard K (2006) The function of elastic proteins in the oscillatory contraction of insect flight muscle. J Muscle Res Cell Motil (in press)Google Scholar
  9. Chen EH, Olson EN, (2001). Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila Dev Cell 1: 705–715PubMedCrossRefGoogle Scholar
  10. Chen EH, Olson EN, (2004). Towards a molecular pathway for myoblast fusion in Drosophila Trends Cell Biol 14: 452–460PubMedCrossRefGoogle Scholar
  11. Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW, (1997). Myofibrillogenesis visualized in living embryonic cardiomyocytes Proc Natl Acad Sci 94: 9493–9498PubMedCrossRefGoogle Scholar
  12. Deatherage JF, Cheng N, Bullard B, (1989). Arrangement of filaments and cros-links in the bee flight muscle Z-disc by image analysis of oblique sections J Cell Biol 108: 1775–1782PubMedCrossRefGoogle Scholar
  13. Dubreuil RR, Wang P, (2000). Genetic analysis of the requirements for α-actinin function J Musc Res Cell Motil 21: 705–713CrossRefGoogle Scholar
  14. Dworak HA, Charles MA, Pellerano LB, Sink H, (2001). Characterization of Drosophila hibris, a gene related to human nephrin Development 128: 4265–4276PubMedGoogle Scholar
  15. Dworak HA, Sink H, (2002). Myoblast fusion in Drosophila Bioessays 24: 591–601PubMedCrossRefGoogle Scholar
  16. Fyrberg E, Kelly M, Ball E, Fyrberg C, Reedy MC, (1990). Molecular genetics of Drosophila alpha actinin: mutant alleles disrupt Z disc integrity and muscle insertions J Cell Biol 110: 1999–2011PubMedCrossRefGoogle Scholar
  17. Fyrberg C, Ketchum A, Ball E, Fyrberg E, (1998). Characterization of lethal Drosophila melanogaster α-Actinin mutants Biochem Genet 36: 299–310PubMedCrossRefGoogle Scholar
  18. Galletta BJ, Chakravarti M, Banerjee R, Abmayr SM, (2004). Sns: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts Mech Dev 121: 1455–1468PubMedCrossRefGoogle Scholar
  19. Hakeda S, Endo S, Saigo K, (2000). Requirements of Kettin, a giant muscle protein highly conserved in evolution, for normal muscle function, viability, and flight activity in Drosophila J Cell Biol 148: 101–114PubMedCrossRefGoogle Scholar
  20. Horsley V, Jansen KM, Mills ST, Pavlath GK, (2003). IL-4 acts as a myoblast recruitment factor during mammalian muscle growth Cell 113: 483–494PubMedCrossRefGoogle Scholar
  21. Horsley V, Pavlath GK, (2004). Forming a multinucleated cell: molecules that regulate myoblast fusion Cell Tiss Org 176: 67–78CrossRefGoogle Scholar
  22. Kesper DA, Buttgereit D, Vishnu S, Fischbach KF and Renkawitz-Pohl, R. Myoblast fusion in Drosophila melanogaster is mediated through a podosomal and immunological synapse-like myogenic adhesive complex (PILMAC). SubmittedGoogle Scholar
  23. Klapper R, Heuser S, Strasser T, Janning W, (2001). A new approach reveals syncytia within the visceral musculature of Drosophila melanogaster Development 128: 2517–2524PubMedGoogle Scholar
  24. Klapper R, Stute C, Schomaker O, Strasser T, Janning W, Renkawitz-Pohl R, Holz A, (2002). The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on Duf/Kirre, sns and mbc Mech Dev 110: 85–96PubMedCrossRefGoogle Scholar
  25. Kolmerer B, Clayton J, Benes V, Allen T, Ferguson C, Leonard K, Weber U, Knekt M, Ansorge W, Labeit S, Bullard B, (2000). Sequence and expression of the kettin gene in Drosophila melanogaster and Caenorhabditis elegans J Mol Biol 296: 425–448CrossRefGoogle Scholar
  26. Lakey A, Ferguson C, Labeit S, Reedy M, Larkins A, Butcher G, Leonard K, Bullard B, (1990). Identification and localization of high molecular weight proteins in insect flight and leg muscles EMBO J 9: 3459–3467PubMedGoogle Scholar
  27. Lakey A, Labeit S, Gautel M, Ferguson C, Barlow DP, Leonard K, Bullard B, (1993). Kettin, a large modular protein in the Z-disc of insect muscles EMBO J 12: 2863–2871PubMedGoogle Scholar
  28. Lee HH, Norris A, Weiss JB, Frasch M, (2003). Jelly belly protein activates the receptor tyrosin kinase Alk to specify visceral muscle pioneers Nature 425: 507–512PubMedCrossRefGoogle Scholar
  29. Leiss D, Hinz U, Gasch A, Mertz R, Renkawitz-Pohl R, (1998). b3-tubulin expression characterizes the differentiating mesodermal germ layer during Drosophila embryogenesis Development 104: 525–531Google Scholar
  30. Lorén CE, Englund C, Grabbe C, Hallberg B, Hunter T, Palmer RH, (2003). A crucial role for the Anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster EMBO Rep 4: 781–786PubMedCrossRefGoogle Scholar
  31. LoRusso SM, Rhee D, Sanger JM, Sanger JW, (1997). Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells Cell Motil Cytoskeleton 37: 183–198PubMedCrossRefGoogle Scholar
  32. Machado C, Sunkel CE, Andrew DJ, (1998). Human autoantibodies reveal Titin as a chromosomal protein J Cell Biol 141: 321–333PubMedCrossRefGoogle Scholar
  33. Machado C, Andrew DJ, (2000). D-Titin: a giant protein with dual roles in chromosomes and muscles J Cell Biol 151: 639–652PubMedCrossRefGoogle Scholar
  34. Masaki T, Endo M, Ebashi S, (1967). Localization of 6S component of α-Actn at the Z-band J Biochem 62: 630–632PubMedGoogle Scholar
  35. Menon SD, Chia W, (2001). Drosophila Rolling pebbles: a multidomain protein required for myoblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded Dev Cell 1: 691–703PubMedCrossRefGoogle Scholar
  36. Menon SD, Osman Z, Chenchill K, Chia W, (2005). A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila J Cell Biol 169: 909–920PubMedCrossRefGoogle Scholar
  37. Pütz M, Kesper D, Buttgereit D, Renkawitz-Pohl R, (2005). In Drosophila melanogaster, the Rolling pebbles isoform 6 (Rols6) is essential for proper malpighian tubule morphology Mech Dev 122: 1206–1217PubMedCrossRefGoogle Scholar
  38. Rau A, Buttgereit D, Holz A, Fetter R, Doberstein SK, Paululat A, Staudt N, Skeath J, Michelson AM, Renkawitz-Pohl R, (2001). rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion Development 128: 5061–5073PubMedGoogle Scholar
  39. Ruiz-Gómez M, Coutts N, Price A, Taylor MV, Bate M, (2000). Drosophila Dumbfounded: A myoblast attractant essential for fusion Cell 102: 189–198PubMedCrossRefGoogle Scholar
  40. San Martin B, Ruiz-Gómez M, Landgraf M, Bate M, (2001). A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo Development 128: 3331–3338Google Scholar
  41. Schneider T, Reiter C, Eule E, Bader B, Lichte B, Nie Z, Schimansky T, Ramos RGP, Fischbach KF, (1995). Restricted expression of the Rst protein is required for normal axonal projections of columnar visual neurons Neuron 15: 259–271PubMedCrossRefGoogle Scholar
  42. Schröter RH, Lier S, Holz A, Bogdan S, Klämbt C, Beck L, Renkawitz-Pohl R, (2004). Kette and blown fuse interact genetically during the second fusion step of myogenesis in Drosophila Development 131: 4501–4509PubMedCrossRefGoogle Scholar
  43. Schröter R, Buttgereit D, Beck L, Holz, A and Renkawitz-Pohl R (2006) Circular visceral myoblast fusion in Drosophila: a new process of myogenesis requiring Blown fuse for cell-shaping. Differentiation (in revision)Google Scholar
  44. Stronach EE, Renfranz PJ, Lilly B, Beckerle MC, (1999). Muscle LIM proteins are associated with muscle sarcomeres and require dMEF2 for their expression during Drosophila myogenesis Mol Biol Cell 10: 2329–2942PubMedGoogle Scholar
  45. Strünkelnberg M, Bonengel B, Moda LM, Hertenstein A, de Couet HG, Ramos RG, Fischbach KF, (2001). rst and ist paralogue kirre act redundantly during embryonic muscle development in Drosophila Development 128: 4229–4239PubMedGoogle Scholar
  46. Stute C, Schimmelpfeng K, Renkawitz-Pohl R, Palmer RH, Holz A, (2004). Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways (milli(Alk)) as receptor for Jeb signalling Development 131: 743–754PubMedCrossRefGoogle Scholar
  47. Sullivan W, Ashburner M, Hawley RS, (2001). Drosophila protocols Cold Spring Harbor Laboratory Press Cold Spring Harbor, New YorkGoogle Scholar
  48. Taylor MV, (2003). Muscle differentiation: signalling cell fusion Curr Biol 13: R964–966PubMedCrossRefGoogle Scholar
  49. van Straaten M, Goulding D, Kolmerer B, Labeit S, Clayton J, Leonard K, Bullard B, (1999). Association of Kettin with Actin in the Z-disc of insect flight muscle J Mol Biol 285: 1549–1562PubMedCrossRefGoogle Scholar
  50. Volk T, (1999). Singling out Drosophila tendon cells: a dialogue between two distinct cell types Trends Genet 15: 448–453PubMedCrossRefGoogle Scholar
  51. Wang J, Sanger JM, Sanger JW, (2005). Differential effects of latrunculin-A on myofibrils in cultures of skeletal muscle cells: Insights into mechanisms of myofibrillogenesis Cell Motil Cytoskeleton 62: 35–47PubMedCrossRefGoogle Scholar
  52. Yarnitzky T, Min L, Volk T, (1997). The Drosophila neuregulin homolog Vein mediates inductive interactions between myotubes and their epidermal attachment cells Genes Dev 11: 2691–2700PubMedCrossRefGoogle Scholar
  53. Zhang Y, Featherstone D, Davis W, Rushton E, Broadie K, (2000). Drosophila D-titin is required for myoblast fusion and skeletal muscle striation J Cell Sci 113: 3103–3115PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • NINA KREISKÖTHER
    • 1
  • NINA REICHERT
    • 1
    • 2
  • DETLEV BUTTGEREIT
    • 1
  • ALEXANDER HERTENSTEIN
    • 3
  • KARL-FRIEDRICH FISCHBACH
    • 3
  • RENATE RENKAWITZ-POHL
    • 1
  1. 1.Fachbereich Biologie, EntwicklungsbiologiePhilipps-Universität MarburgMarburgGermany
  2. 2.Fachbereich Medizin, Institut für Molekularbiologie und TumorforschungPhilipps-Universität MarburgMarburgGermany
  3. 3.Institut für Biologie III (Neurogenetik)Albert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations