Skip to main content
Log in

Developmental changes in rat cardiac titin/connectin: transitions in normal animals and in mutants with a delayed pattern of isoform transition

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Rat cardiac titin undergoes developmental changes in isoform expression during the period from late embryonic through the first 20–25 days of life. At least five size classes of titin isoforms have been identified using SDS agarose gel electrophoresis. The longest normal isoform is expressed in the embryonic stages, and it is progressively replaced with increasingly smaller versions. The isoform switching is consistent with changes in resting tension from lower values in one-day neonates to higher levels in adult myocytes. Considerable micro-heterogeneity in alternative splicing patterns also was found, particularly in the N2BA PEVK region of human, rat, and dog ventricle. A rat mutation has been identified in which the embryonic-neonatal titin isoform transitions are markedly delayed. These mutant animals may prove useful for examining the role of titin in stretch-activated signal transduction and in the Frank–Starling relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S (2001) The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 89:1065–1072

    PubMed  CAS  Google Scholar 

  • Campbell KS, Moss RL 2003. SLControl: PC-based data acquisition and analysis for muscle mechanics. Am J Physiol Heart Circ Physiol 285:H2857–H2864

    PubMed  CAS  Google Scholar 

  • Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S, Granzier H (2000) Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 86:59–67

    PubMed  CAS  Google Scholar 

  • Cooper TA, Ordahl CP (1985) A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing. J Biol Chem 260:11140–11148

    PubMed  CAS  Google Scholar 

  • Epstein ND, Davis JS (2003) Sensing stretch is fundamental. Cell 112:147–150

    Article  PubMed  CAS  Google Scholar 

  • Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86:1114–1121

    PubMed  CAS  Google Scholar 

  • Fukuda N, Granzier H (2004) Role of the giant elastic protein titin in the Frank–Starling mechanism of the heart. Curr Vasc Pharmacol 2:135–139

    Article  PubMed  CAS  Google Scholar 

  • Fukuda N, Wu Y, Farman G, Irving TC, Granzier H (2003) Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle. J Physiol 553:147–154

    Article  PubMed  CAS  Google Scholar 

  • Furst DO, Osborn M, Nave R, Weber K (1988) The organization of the titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z-line extends close to the M-line. J Cell Biol 106:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Granzier H, Labeit S (2002) Cardiac titin: an adjustable multi-functional spring. J Physiol (Lond) 541:335–342

    Article  CAS  Google Scholar 

  • Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295

    Article  PubMed  CAS  Google Scholar 

  • Greaser M (2001) Identification of new repeating motifs in titin. Proteins 43:145–149

    Article  PubMed  CAS  Google Scholar 

  • Greaser ML, Berri M, Warren CM, Mozdziak PE (2002) Species variations in cDNA sequence and exon splicing patterns in the extensible I-band region of cardiac titin: relation to passive tension. J Muscle Res Cell Motil 23:471–480

    Article  Google Scholar 

  • Gregorio CC, Granzier H, Sorimachi H, Labeit S (1999) Muscle assembly: a titanic achievement? Curr Opin Cell Biol 11:18–25

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Cruz G, Van Heerden AH, Wang K (2001) Modular motif, structural folds and affinity profiles of the PEVK segment of human fetal skeletal muscle titin. J Biol Chem 276:7442–7449

    Article  PubMed  CAS  Google Scholar 

  • Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res 84:1339–1352

    PubMed  CAS  Google Scholar 

  • Jin JP, Lin JJ (1989) Isolation and characterization of cDNA clones encoding embryonic and adult isoforms of rat cardiac troponin T. J Biol Chem 264:14471–14477

    PubMed  CAS  Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    PubMed  CAS  Google Scholar 

  • Lahmers S, Wu Y, Call DR, Labeit S, Granzier H (2004) Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 94:505–513

    Article  PubMed  CAS  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146:631–644

    Article  PubMed  CAS  Google Scholar 

  • Lompre AM, Mercadier JJ, Wisnewsky C, Bouveret P, Pantaloni C, D’Albis A, Schwartz K (1981) Species- and age-dependent changes in the relative amounts of cardiac myosin isozymes in mammals. Dev Biol 84: 286–290

    Article  CAS  Google Scholar 

  • Lompre AM, Nadel-Ginard B, Mahdavi V (1984) Expression of the cardiac ventricular alpha- and beta-myosin heavy chain gene is developmentally and hormonally regulated. J Biol Chem 259: 6437–6446

    PubMed  CAS  Google Scholar 

  • Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA (2004) Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 95:708–716

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1976) Connectin, an elastic protein from myofibrils. J Biochem (Tokyo) 80:405–407

    CAS  Google Scholar 

  • Maruyama K (1997) Connectin/titin, a giant elastic protein of muscle. FASEB J 11:341–345

    PubMed  CAS  Google Scholar 

  • Miller MK, Granzier H, Ehler E, Gregorio CC (2004) The sensitive giant: the role of titin-based stretch sensing complexes in the heart. Trends Cell Biol 14:119–126

    Article  PubMed  CAS  Google Scholar 

  • Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110:155–162

    Article  PubMed  CAS  Google Scholar 

  • Opitz CA, Leake MC, Makarenko I, Benes V, Linke WA (2004) Developmentally regulated switching of titin size alters myofibrillar stiffness in the perinatal heart. Circ Res 94:967–975

    Article  PubMed  CAS  Google Scholar 

  • Reiser PJ, Westfall MV, Schiaffino S, Solaro JR (1994) Tension production and thin-filament protein isoforms in developing rat myocardium. Am J Physiol 267: H1589–H1596

    PubMed  CAS  Google Scholar 

  • Strang KT, Sweitzer NK, Greaser ML, Moss RL (1994) Beta-adrenergic receptor stimulation increases unloaded shortening velocity of skinned single ventricular myocytes from rats. Circ Res 74: 542–549

    PubMed  CAS  Google Scholar 

  • Saggin L, Ausoni S, Gorza L, Sartore S, Schiaffino S (1988) Troponin T switching in the developing rat heart. J Biol Chem 263:18488–18492

    PubMed  CAS  Google Scholar 

  • Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671–684

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J (2003) Titin: properties and family relationships. Nat Rev Mol Cell Biol 4:679–689

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Freiburg A, Centner T, Labeit S, Granzier H (1999) Molecular dissection of N2B cardiac titin’s extensibility. Biophys J 77:3189–3196

    PubMed  CAS  Google Scholar 

  • Trombitas K, Redkar A, Centner T, Wu Y, Labeit S, Granzier H (2000) Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Biophys J 79:3226–3234

    Article  PubMed  CAS  Google Scholar 

  • Trombitas K, Wu Y, Labeit D, Labeit S, Granzier H (2001) Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 281:H1793–H1799

    PubMed  CAS  Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702

    Article  PubMed  CAS  Google Scholar 

  • Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: A test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105

    Article  PubMed  CAS  Google Scholar 

  • Warren CM, Krzesinski PR, Greaser ML (2003a) Vertical agarose gel electrophoresis and electroblotting of high molecular weight proteins. Electrophoresis 24:1695–1702

    Article  CAS  Google Scholar 

  • Warren CM, Jordan MC, Roos KP, Krzesinski PR, Greaser ML (2003b) Titin isoform expression in normal and hypertensive myocardium. Cardiovasc Res 59:86–94

    Article  CAS  Google Scholar 

  • Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML (2004) Titin isoform changes in rat myocardium during development. Mech Dev 121:1301–1312

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S, Granzier H (2002) Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. J Biol Chem 277:11549–11548

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H (2000) Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 32:2151–2162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and by grants from the National Institutes of Health (HL47053; HL62466; HL77196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion L. Greaser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greaser, M.L., Krzesinski, P.R., Warren, C.M. et al. Developmental changes in rat cardiac titin/connectin: transitions in normal animals and in mutants with a delayed pattern of isoform transition. J Muscle Res Cell Motil 26, 325–332 (2005). https://doi.org/10.1007/s10974-005-9039-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-005-9039-0

Keywords

Navigation