Skip to main content
Log in

Creatine kinase is an alpha myosin heavy chain 3′UTR mRNA binding protein

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Altered cardiac workload regulates the translation and localization of the α myosin heavy chain (αMyHC) messenger RNA through the 3′ untranslated region (UTR) by protein–RNA interactions. We used the αMyHC 3′UTR from neonatal rat heart tissue in a gel shift analysis to find RNA binding proteins. One was identified by microsequencing as creatine kinase, brain form B (CKBB). The affinity of its binding interaction was evaluated using sense and antisense αMyHC 3′UTR and 3′UTR probes from myosin isoforms of 2B and 2X skeletal muscle. Removal of calcium by the chelating agent EGTA had a potentiating effect on the formation of the CKBB/αMyHC 3′UTR complex in vitro. Varying the concentration of ATP (0.1–1 mM) also enhanced this interaction, suggesting that autophosphorylation of CKBB is taking place. Our novel finding that CKBB, an energy transduction enzyme, binds to the RNA of the 3′UTR of the faster ATP consuming αMyHC suggests a possible regulatory linkage between the metabolic state of the cell and myosin isoform expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashley WW Jr. and Russell B (2000) Tenotomy decreases reporter protein synthesis via the 3'-untranslated region of the beta-myosin heavy chain mRNA. Am J Physiol Cell Physiol 279: C257–C265.

    PubMed  CAS  Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50: 197–218.

    Article  PubMed  Google Scholar 

  • Ch'ng JL and Ibrahim B (1994) Transcriptional and posttranscriptional mechanisms modulate creatine kinase expression during differentiation of osteoblastic cells. J Biol Chem 269: 2336–2341.

    PubMed  Google Scholar 

  • Eisenberg BR, Edwards JA and Zak R (1985) Transmural distribution of isomyosin in rabbit ventricle during maturation examined by immunofluorescence and staining for calcium-activated adenosine triphosphatase. Circ Res 56: 548–555.

    PubMed  CAS  Google Scholar 

  • Goldspink PH, Thomason DB and Russell B (1996) Beating affects the posttranscriptional regulation of alpha myosin mRNA in cardiac cultures. Am J Physiol 271: H2584–H2590.

    PubMed  CAS  Google Scholar 

  • Goldspink P, Sharp W and Russell B (1997) Localization of cardiac alpha-myosin heavy chain mRNA is regulated by its 3' untranslated region via mechanical activity and translational block. J Cell Sci 110: 2969–2978.

    PubMed  CAS  Google Scholar 

  • Herron TJ and McDonald KS (2002) Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ Res 90: 1150–1152.

    Article  PubMed  CAS  Google Scholar 

  • Hunter JJ and Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341: 1276–1283.

    Article  PubMed  CAS  Google Scholar 

  • Ingwall J (1993) Adaptive and maladaptive processes: is cardiac failure a consequence of decreased energy reserve? Circulation 87: VII58–VII62.

    Google Scholar 

  • Ingwall JS (2002) Is creatine kinase a target for AMP-activated protein kinase in the heart? J Mol Cell Cardiol 34: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  • Kaptain S, Downey WE, Tang C, Philpott C, Haile D, Orloff DG, Harford JB, Rouault TA and Klausner RD (1991) A regulated RNA binding protein also possesses aconitase activity. Proc Natl Acad Sci USA 88: 10109–10113.

    Article  PubMed  CAS  Google Scholar 

  • Kiri A and Goldspink G (2002) RNA-protein interactions of the 3' untranslated regions of myosin heavy chain transcripts. J Muscle Res Cell Motil 23: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Kraft T, Hornemann T, Stolz M, Nier V and Wallimann T (2000) Coupling of creatine kinase to glycolytic enzymes at the sarcomeric I-band of skeletal muscle: a biochemical study in situ. J Muscle Res Cell Motil 21: 691–703.

    Article  PubMed  CAS  Google Scholar 

  • Kuschel M, Karczewski P, Hempel P, Schlegel WP, Krause EG and Bartel S (1999) Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Am J Physiol 276: H1625–H1633.

    PubMed  CAS  Google Scholar 

  • Masataka S, Seiryo S, Hiroshi Y, Shin-ichi M and Takashi S (1996) Coupling between myosin ATPase cycle and creatine kinase cycle facilitates cardiac actomyosin sliding in vitro: a clue to mechanical dysfunction during myocardial ischemia. Circulation 93: 310–317.

    Google Scholar 

  • McDermott PJ and Morgan HE (1989) Contraction modulates the capacity for protein synthesis during growth of neonatal heart cells in culture. Circ Res 64: 542–553.

    PubMed  CAS  Google Scholar 

  • Misquitta CM, Mwanjewe J, Nie L and Grover AK (2002) Sarcoplasmic reticulum Ca(2+) pump mRNA stability in cardiac and smooth muscle: role of the 3'-untranslated region. Am J Physiol Cell Physiol 283: C560–C568.

    PubMed  CAS  Google Scholar 

  • Moerland TS, Wolf NG and Kushmerick MJ (1989) Administration of a creatine analogue induces isomyosin transitions in muscle. Am J Physiol 257: C810–C816.

    PubMed  CAS  Google Scholar 

  • Nagy E, Henics T, Eckert M, Miseta A, Lightowlers RN and Kellermayer M (2000) Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275: 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Nikcevic G, Heidkamp MC, Perhonen M and Russell B (1999) Mechanical activity in heart regulates translation of alpha-myosin heavy chain mRNA but not its localization. Am J Physiol 276: H2013–H2019.

    PubMed  CAS  Google Scholar 

  • Nikcevic G, Perhonen M, Boateng SY and Russell B (2000) Translation is regulated via the 3' untranslated region of alpha-myosin heavy chain mRNA by calcium but not by its localization. J Muscle Res Cell Motil 21: 599–607.

    Article  PubMed  CAS  Google Scholar 

  • Nussbaum JM, Gunnery S and Mathews MB (2002) The 3'-untranslated regionsofcytoskeletalmusclemRNAsinhibittranslationbyactivating the double-stranded RNA-dependent protein kinase PKR. Nucleic Acids Res 30:1205–1212.

    Article  PubMed  CAS  Google Scholar 

  • Ponticos M, Lu QL, Morgan JE, Hardie DG, Partridge TA and Carling D (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 17: 1688–1699.

    Article  PubMed  CAS  Google Scholar 

  • Popanda O, Fox G and Thielmann HW (1998) Modulation of DNA polymerases alpha, delta and epsilon by lactate dehydrogenase and 3-phosphoglycerate kinase. Biochim Biophys Acta 1397: 102–117.

    PubMed  CAS  Google Scholar 

  • Qi M, Puglisi JL, Byron KL, Ojamaa K, Klein I, Bers DM and Samarel AM (1997) Myosin heavy chain gene expression in neonatal rat heart cells: effects of [Ca2+]i and contractile activity. Am J Physiol 273: C394–C403.

    PubMed  CAS  Google Scholar 

  • Quest AF, Soldati T, Hemmer W, Perriard JC, Eppenberger HM and Wallimann T. (1990) Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo. FEBS Lett 269: 457–464.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie ME (1996) Characterization of human B creatine kinase gene regulation in the heart in vitro and in vivo. J Biol Chem 271: 25485–25491.

    PubMed  CAS  Google Scholar 

  • Samarel AM and Engelmann GL (1991) Contractile activity modulates myosin heavy chain-beta expression in neonatal rat heart cells. Am J Physiol 261: H1067-H1077.

    PubMed  CAS  Google Scholar 

  • Sirover MA (1996) Emerging new functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. Life Sci 58: 2271–2277.

    Article  PubMed  CAS  Google Scholar 

  • Stolz M, Hornemann T, Schlattner U and Wallimann T (2002) Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics. Biochem J 363: 785–792.

    Article  PubMed  CAS  Google Scholar 

  • Wallimann T, Kuhn HJ, Pelloni G, Turner DC and Eppenberger HM (1977) Localization of creatine kinase isoenzymes in myofibrils. II. Chicken heart muscle. J Cell Biol 75: 318–325.

    Article  PubMed  CAS  Google Scholar 

  • Xu KY and Becker LC (1998) Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesicles. J Histochem Cytochem 46: 419–427.

    PubMed  CAS  Google Scholar 

  • Zimmerman AW and Veerkamp JH (1998) Members of the fatty acid-binding protein family inhibit cell-free protein synthesis. FEBS Lett 437: 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13): 3406–3415.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vracar-grabar, M., Russell, B. Creatine kinase is an alpha myosin heavy chain 3′UTR mRNA binding protein. J Muscle Res Cell Motil 25, 397–404 (2004). https://doi.org/10.1007/s10974-004-1141-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-004-1141-1

Navigation