Numerical simulation of the effect of chimney configuration on the performance of a solar chimney power plant


Previous studies have shown that the crosswind reduces the output power of a SCPP (solar chimney power plant) with the deflection of the plume at the exit and separation of wind flow there at the downstream. The present numerical investigation was focused on the effect of the stack configuration on the performance of a SCPP. In this paper, the SCPP of the prototype in Manzanares was simulated, where the Boussinesq approximation was used for solving the continuity, Navier–Stokes and energy equations by the standard k-epsilon turbulence model in finite volume method. Governing parameters are taken as oblique angles from 27° to 45° and wind velocity from 0 to 10 m s−1. Investigation revealed that by changing the stack configuration, the performance of the SCPP could be improved. Numerical simulation of the conventional chimney was compared with the simulation data of the proposed altered chimney geometry (outlet bevel cutting) and observed that the throttling effect on the outlet of the chimney could be reduced. It was noticed that by changing the chimney oblique angle from 27° to 45°, the efficiency of the power plant was dropped. Further, the results illustrated that the oblique angle relies on the wind velocity and it needs to increase with the increase in the wind velocity to obtain a reasonable change in power output. The present investigation was further enhanced to incorporate a comparison of solar chimney power output in two cities (Kuala Lumpur and Kerman) for a better understanding of the effect of environment on constructing the solar tower power plant. The result shows that Kuala Lumpur is appropriated for the installation of SCPP although, the Kerman is suitable too, but the wind velocity in that city is higher than that in Kuala Lumpur.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


A :

Area (m2)


Specific heat (J kg K−1)

G :

Global solar radiation (W m−2)

g :

Gravitational acceleration (M s−2)

H :

Height (m)

h r :

Roof height above ground (m)

h total :

Total enthalpy (J kg−1)

\(\dot{m}\) :

Flow rate (kg s−1)

P :

Power (W)

p :

Pressure (Pa)

Q :

Heat (W)


Heat flux (W m−2)

r :

Collector radius (m)

S E :

Source term in the energy equation (W/m−3)

S M :

Source term in the momentum equation (kg m−2 s−2)

T :

Absolute temperature (K)

u :

Velocity (M s−1)

u t :

Average flow speed (M s−1)

\(\forall\) :

Volume (m3)

t :

Output power (W)


General coordinate (m

α :

Thermal diffusion coefficient (m2 s−1)

α t :

Eddy thermal diffusion coefficient (m2 s−1)

μ :

Viscosity (kg m s−1)

μ t :

Eddy viscosity (kg m s−1)

β :

Coefficient of volumetric thermal expansion (1 K−1)

η :


ρ :

Density (kg m−3)

ρ t :

Average air density (kg m−3)

δ :

Kronecker delta






Component i


Component j






  1. 1.

    Ming T, Liu W, Wu Y, Gui J, Peng K, Pan T. Chapter 1—introduction. In: Ming T, editor. Solar chimney power plant generating technology. Academic Press: Cambridge; 2016. p. 1–46.

    Google Scholar 

  2. 2.

    Robert R. Solar prototype development in Spain show great promise. MPs Review. 1982;2:21–3.

    Google Scholar 

  3. 3.

    Haaf W, Friedrich K, Mayr G, Schlaich J. Solar chimneys part i: principle and construction of the pilot plant in Manzanares. Int J Solar Energy. 1983;2(1):3–20.

    Article  Google Scholar 

  4. 4.

    Haaf W. Solar chimneys. Int J Solar Energy. 1984;2(2):141–61.

    Article  Google Scholar 

  5. 5.

    Varol Y, Oztop HF. A comparative numerical study on natural convection in inclined wavy and flat-plate solar collectors. Build Environ. 2008;43(9):1535–44.

    Article  Google Scholar 

  6. 6.

    Rahman MM, Öztop HF, Ahsan A, Kalam MA, Varol Y. Double-diffusive natural convection in a triangular solar collector. Int Commun Heat Mass Transf. 2012;39(2):264–9.

    Article  Google Scholar 

  7. 7.

    Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Article  Google Scholar 

  8. 8.

    Kolsi L, Alrashed AAAA, Al-Salem K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–18.

    CAS  Article  Google Scholar 

  9. 9.

    Pastohr H, Kornadt O, Gürlebeck K. Numerical and analytical calculations of the temperature and flow field in the upwind power plant. Int J Energy Res. 2004;28(6):495–510.

  10. 10.

    Xu G, Ming T, Pan Y, Meng F, Zhou C. Numerical analysis on the performance of solar chimney power plant system. Energy Convers Manag. 2011;52(2):876–83.

    Article  Google Scholar 

  11. 11.

    Koonsrisuk A, Chitsomboon T. Partial geometric similarity for solar chimney power plant modeling. Sol Energy. 2009;83(9):1611–8.

    Article  Google Scholar 

  12. 12.

    Koonsrisuk A, Chitsomboon T. Dynamic similarity in solar chimney modeling. Sol Energy. 2007;81(12):1439–46.

    Article  Google Scholar 

  13. 13.

    Ming T, Wang X, de Richter RK, Liu W, Wu T, Pan Y. Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system. Renew Sustainable Energy Rev. 2012;16(8):5567–83.

  14. 14.

    Fasel HF, Meng F, Shams E, Gross A. CFD analysis for solar chimney power plants. Solar Energy. 2013;98:12–22.

  15. 15.

    Padki M, Sherif S, editors. Fluid dynamics of solar chimneys. Forum on industrial applications of fluid mechanics. New York: ASME; 1988.

    Google Scholar 

  16. 16.

    MM. Padki, Sherif S. Solar chimney for medium-to-large scale power generation. In: Proceedings of the Manila international symposium on the development and management of energy resources. 1989;1:432–7.

  17. 17.

    MM. Padki, Sherif S. A mathematical model for solar chimneys. In: Proceedings of 1992 international renewable energy conference, Amman, Jordan 1992;1:289–94.

  18. 18.

    Padki M, Sherif S. On a simple analytical model for solar chimneys. Int J Energy Res. 1999;23(4):345–9.

    CAS  Article  Google Scholar 

  19. 19.

    Pasumarthi N, Sherif S. Experimental and theoretical performance of a demonstration solar chimney model—part I: mathematical model development. Int J Energy Res. 1998;22(3):277–88.

    Article  Google Scholar 

  20. 20.

    Pasumarthi N, Sherif S. Experimental and theoretical performance of a demonstration solar chimney model—Part II: experimental and theoretical results and economic analysis. Int J Energy Res. 1998;22(5):443–61.

    CAS  Article  Google Scholar 

  21. 21.

    Hu S, Leung DYC, Chan JCY. Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy. 2017;120:1–11.

  22. 22.

    Gholamalizadeh E, Kim M-H. CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy. 2016;107:661–7.

    Article  Google Scholar 

  23. 23.

    Choi YJ, Kam DH, Park YW, Jeong YH. Development of analytical model for solar chimney power plant with and without water storage system. Energy. 2016;112:200–7.

    Article  Google Scholar 

  24. 24.

    Sangi R. Performance evaluation of solar chimney power plants in Iran. Renew Sustain Energy Rev. 2012;16(1):704–10.

    Article  Google Scholar 

  25. 25.

    Hamdan MO. Analysis of solar chimney power plant utilizing chimney discrete model. Renewable Energy. 2013;56:50–4.

    Article  Google Scholar 

  26. 26.

    Ghalamchi M, Kasaeian A, Ghalamchi M, Mirzahosseini AH. An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renew Energy. 2016;91:477–83.

  27. 27.

    Fathy Cidek Esmail M, Mekhail T. Investigations of the instantaneous performance of a solar chimney power plant installed in Aswan using IoT. IET Renew Power Gen. 2019;13(12):2261–6.

  28. 28.

    Serag-Eldin M, editor. Mitigating adverse wind effects on flow in solar chimney plants. In: Proceedings of the 4th international engineering conference, Sharm El-Sheikh; 2004.

  29. 29.

    Ming T, Gui J, de Richter RK, Pan Y, Xu G. Numerical analysis on the solar updraft power plant system with a blockage. Solar Energy. 2013;98:58–69.

  30. 30.

    Pretorius JP, Kröger DG. The influence of environment on solar chimney power plant performance. R & D J S Afr Inst Mech Eng. 2009;25:1–9.

    Google Scholar 

  31. 31.

    Zhou X, Yuan S. Wind effects on a solar updraft power plant. J Wind Eng Ind Aerodyn. 2017;170:294–305.

    Article  Google Scholar 

  32. 32.

    Harte R, Höffer R, Krätzig WB, Mark P, Niemann H-J. Solar updraft power plants: Engineering structures for sustainable energy generation. Eng Struct. 2013;56:1698–706.

    Article  Google Scholar 

  33. 33.

    Lupi F, Borri C, Harte R, Krätzig WB, Niemann HJ. Facing technological challenges of Solar Updraft Power Plants. J Sound Vib. 2015;334:57–84.

    Article  Google Scholar 

  34. 34.

    Arzpeyma M, Mekhilef S, Newaz KMS, Horan B, Seyedmahmoudian M, Akram N, et al. Solar chimney power plant and its correlation with ambient wind effect. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  35. 35.

    Koonsrisuk A, Chitsomboon T. Accuracy of theoretical models in the prediction of solar chimney performance. Sol Energy. 2009;83(10):1764–71.

    Article  Google Scholar 

  36. 36.

    Guo P-h, Li J-y, Wang Y. Numerical simulations of solar chimney power plant with radiation model. Renew Energy. 2014;62:24–30.

  37. 37.

    Djimli S, Chaker, A. Numerical study of the solar chimney power plant performance in the region of M’Sila-Algeria. Power (W). 2014;1000(12).

  38. 38.

    Gannon AJ, von Backström TW. Solar chimney cycle analysis with system loss and solar collector performance. J Solar Energy Eng. 2000;122(3):133–7.

  39. 39.

    Malalasekera W, Versteeg H. An introduction to computational fluid dynamics: the finite method. Upper Saddle River: PEARSON Prentice Hall; 2007.

    Google Scholar 

  40. 40.

    Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite method. Upper Saddle River: Pearson Education; 2007.

    Google Scholar 

  41. 41.

    Fluent user’s guide. January 2005.

  42. 42.

    Shen W, Ming T, Ding Y, Wu Y, Kiesgen de Richter R. Numerical analysis on an Shen W, Ming T, Ding Y, Wu Y, de_Richter RK. Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind. Renew Energy. 2014;68:662–76.

Download references


Funding was provided by Universiti Malaya (Grant No. If056-2019).

Author information



Corresponding author

Correspondence to Mazdak Arzpeyma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arzpeyma, M., Mekhilef, S., Newaz, K.M.S. et al. Numerical simulation of the effect of chimney configuration on the performance of a solar chimney power plant. J Therm Anal Calorim (2021).

Download citation


  • CFD
  • Solar chimney
  • Stack configuration
  • Wind effect
  • Climate change