Performance enhancement of a basin solar still using γ-Al2O3 nanoparticles and a mixer: an experimental approach


Lack of potable water around the world has become a global problem. Solar stills are one of the main technologies for freshwater production. The performance of these stills can be enhanced by applying nanoparticles in the water. In this research, γ-Al2O3 nanoparticles have been used as an effective approach for pure water production in a single slope basin solar still in the presence of mixer. The nanoparticles were synthesized and verified using FTIR, XRD and SEM analyses. The effects of the amount of γ-Al2O3 nanoparticles, initial water depth, the solar energy intensity and the presence of mixer on the distillate yield, water depth and the temperatures of glass, bottom and brine have been investigated. The results showed that 0.3 mass% of γ-Al2O3 increased the distillate yield by about 60.03%. Due to more water evaporation in experiments with γ-Al2O3, the water depth reduction is more than the experiments without addition of nanoparticles. The increase in glass, bottom and brine temperatures were more significant in tests with nanoparticles. Presence of mixer in the basin uniformly dispersed the nanoparticles throughout the still and increased the evaporation rate and finally the distillate yield. In general, applying γ-Al2O3 nanoparticles enhanced the performance of still due to improving the thermal characteristics of saline water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of data and materials



  1. 1.

    Tiwari GN, Sahota L. Advanced solar-distillation systems: basic principles, thermal modeling, and its application. Berlin: Springer; 2017.

    Google Scholar 

  2. 2.

    Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust Sci. 2005;31:242–81.

    CAS  Article  Google Scholar 

  3. 3.

    Lawrence SA, Tiwari GN. Theoretical evaluation of solar distillation under natural circulation with heat exchanger. Energy Convers Manag. 1990;30:205–13.

    CAS  Article  Google Scholar 

  4. 4.

    Karami N, Rahimi M. Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid. Int Commun Heat Mass Transf. 2014;55:45–52.

    CAS  Article  Google Scholar 

  5. 5.

    Singh DB, Yadav JK, Dwivedi VK, Kumar S, Tiwari GN, Al-Helal IM. Experimental studies of active solar still integrated with two hybrid PVT collectors. Sol Energy. 2016;130:207–23.

    Article  Google Scholar 

  6. 6.

    Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA. Parameters affecting solar still productivity. Energy Convers Manag. 2000;41:1797–809.

    CAS  Article  Google Scholar 

  7. 7.

    Tripathi R, Tiwari GN. Performance evaluation of a solar still by using the concept of solar fractionation. Desalination. 2004;169:69–80.

    CAS  Article  Google Scholar 

  8. 8.

    Sözen A, Gürü M, Khanlari A, Çiftçi E. Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid. Appl Therm Eng. 2019;160:114001.

    Article  CAS  Google Scholar 

  9. 9.

    Gürbüz EY, Variyenli HI, Sözen A, Khanlari A, Ökten M. Experimental and numerical analysis on using CuO–Al2O3/water hybrid nanofluid in a U-type tubular heat exchanger. Int J Numer Methods Heat Fluid Flow. 2020.

  10. 10.

    Khanlari A. The effect of utilizing Al2O3–SiO2/deionized water hybrid nanofluid in a tube-type heat exchanger. Heat Transf Res. 2020;51:991–1005.

    Article  Google Scholar 

  11. 11.

    Valizadeh Ardalan M, Alizadeh R, Ameri A, Alizadeh A, Mohammad Jafari F. Influence of grooves geometric parameters on the nanofluid flow and thermal efficiency of Chevron plate heat exchangers. Energy Sources Part A. 2020:1–22.

  12. 12.

    Abdelkader TK, Zhang Y, Gaballah ES, Wang S, Wan Q, Fan Q. Energy and exergy analysis of a flat-plate solar air heater coated with carbon nanotubes and cupric oxide nanoparticles embedded in black paint. J Clean Prod. 2020;250:119501.

    CAS  Article  Google Scholar 

  13. 13.

    Sadripour S. 3D numerical analysis of atmospheric-aerosol/carbon-black nanofluid flow within a solar air heater located in Shiraz, Iran. Int J Numer Methods Heat Fluid Flow. 2019.

  14. 14.

    Khanlari A, Sözen A, Şirin C, Tuncer AD, Gungor A. Performance enhancement of a greenhouse dryer: analysis of a cost-effective alternative solar air heater. J Clean Prod. 2020;251:119672.

    Article  Google Scholar 

  15. 15.

    Leong KY, Ong HC, Amer NH, Norazrina MJ, Risby MS, Ahmad KZK. An overview on current application of nanofluids in solar thermal collector and its challenges. Renew Sustain Energy Rev. 2016;53:1092–105.

    CAS  Article  Google Scholar 

  16. 16.

    Hong Z, Pei J, Wang Y, Cao B, Mao M, Liu H, et al. Characteristics of the direct absorption solar collectors based on reduced graphene oxide nanofluids in solar steam evaporation. Energy Convers Manag. 2019;199:112019.

    CAS  Article  Google Scholar 

  17. 17.

    Singh G, Kumar S, Tiwari GN. Design, fabrication and performance evaluation of a hybrid photovoltaic thermal (PVT) double slope active solar still. Desalination. 2011;277:399–406.

    CAS  Article  Google Scholar 

  18. 18.

    Moon J, Kim TK, VanSaders B, Choi C, Liu Z, Jin S, et al. Black oxide nanoparticles as durable solar absorbing material for high-temperature concentrating solar power system. Sol Energy Mater Sol Cells. 2015;134:417–24.

    CAS  Article  Google Scholar 

  19. 19.

    Sharshir SW, Peng G, Wu L, Essa FA, Kabeel AE, Yang N. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl Energy. 2017;191:358–66.

    CAS  Article  Google Scholar 

  20. 20.

    Rivera Gil P, Oberdörster G, Elder A, Puntes V, Parak WJ. Correlating physico-chemical with toxicological properties of nanoparticles: the present and the future. ACS Nano. 2010;4:5527–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Bait O, Si-Ameur M. Enhanced heat and mass transfer in solar stills using nanofluids: a review. Sol Energy. 2018;170:694–722.

    CAS  Article  Google Scholar 

  22. 22.

    Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135:1145–59.

    CAS  Article  Google Scholar 

  23. 23.

    Elango T, Kannan A, Kalidasa MK. Performance study on single basin single slope solar still with different water nanofluids. Desalination. 2015;360:45–51.

    CAS  Article  Google Scholar 

  24. 24.

    Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim. 2020;139:1619–36.

    CAS  Article  Google Scholar 

  25. 25.

    Madani AA, Zaki GM. Yield of solar stills with porous basins. Appl Energy. 1995;52:273–81.

    Article  Google Scholar 

  26. 26.

    Sharshir SW, Kandeal AW, Ismail M, Abdelaziz GB, Kabeel AE, Yang N. Augmentation of a pyramid solar still performance using evacuated tubes and nanofluid: experimental approach. Appl Therm Eng. 2019;160:113997.

    CAS  Article  Google Scholar 

  27. 27.

    Mahian O, Kianifar A, Heris SZ, Wen D, Sahin AZ, Wongwises S. Nanofluids effects on the evaporation rate in a solar still equipped with a heat exchanger. Nano Energy. 2017;36:134–55.

    CAS  Article  Google Scholar 

  28. 28.

    Elfasakhany A. Performance assessment and productivity of a simple-type solar still integrated with nanocomposite energy storage system. Appl Energy. 2016;183:399–407.

    CAS  Article  Google Scholar 

  29. 29.

    El-Said EMS, Kabeel AE, Abdulaziz M. Theoretical study on hybrid desalination system coupled with nano-fluid solar heater for arid states. Desalination. 2016;386:84–98.

    CAS  Article  Google Scholar 

  30. 30.

    Modi KV, Jani HK, Gamit ID. Impact of orientation and water depth on productivity of single-basin dual slope solar still with Al2O3 and CuO nanoparticles. J Therm Anal Calorim. 2020:1–15.

  31. 31.

    Gupta B, Shankar P, Sharma R, Baredar P. Performance enhancement using nano particles in modified passive solar still. Procedia Technol. 2016;25:1209–16.

    Article  Google Scholar 

  32. 32.

    Kabeel AE, Omara ZM, Essa FA, Abdullah AS, Arunkumar T, Sathyamurthy R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alexandria Eng J. 2017;56:433–8.

    Article  Google Scholar 

  33. 33.

    Madhu B, Subramanian BE, Nagarajan PK, Sathyamurthy R, Mageshbabu D. Improving the yield of freshwater and exergy analysis of conventional solar still with different nanofluids. FME Trans. 2017;45:524–30.

    Article  Google Scholar 

  34. 34.

    Madhu B, Balasubramanian E, Nagarajan PK, Sathyamurthy R, Kabeel AE, Arunkumar T, et al. Improving the yield of fresh water from conventional and stepped solar still with different nanofluids. Desalin Water Treat. 2017;100:243–9.

    CAS  Article  Google Scholar 

  35. 35.

    Rufuss DDW, Suganthi L, Iniyan S, Davies PA. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J Clean Prod. 2018;192:9–29.

    Article  CAS  Google Scholar 

  36. 36.

    Sahota L, Tiwari GN. Effect of nanofluids on the performance of passive double slope solar still: a comparative study using characteristic curve. Desalination. 2016;388:9–21.

    CAS  Article  Google Scholar 

  37. 37.

    Sharshir SW, Peng G, Wu L, Yang N, Essa FA, Elsheikh AH, et al. Enhancing the solar still performance using nanofluids and glass cover cooling: experimental study. Appl Therm Eng. 2017;113:684–93.

    CAS  Article  Google Scholar 

  38. 38.

    Omara ZM, Kabeel AE, Essa FA. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers Manag. 2015;103:965–72.

    Article  Google Scholar 

  39. 39.

    Gupta B, Kumar A, Baredar PV. Experimental investigation on modified solar still using nanoparticles and water sprinkler attachment. Front Mater. 2017;4:23.

    Article  Google Scholar 

  40. 40.

    Saleh SM, Soliman AM, Sharaf MA, Kale V, Gadgil B. Influence of solvent in the synthesis of nano-structured ZnO by hydrothermal method and their application in solar-still. J Environ Chem Eng. 2017;5:1219–26.

    CAS  Article  Google Scholar 

  41. 41.

    Abdelal N, Taamneh Y. Enhancement of pyramid solar still productivity using absorber plates made of carbon fiber/CNT-modified epoxy composites. Desalination. 2017;419:117–24.

    CAS  Article  Google Scholar 

  42. 42.

    Panchal H, Sathyamurthy R, Kabeel AE, El-Agouz SA, Rufus D, Arunkumar T, et al. Annual performance analysis of adding different nanofluids in stepped solar still. J Therm Anal Calorim. 2019;138:3175–82.

    CAS  Article  Google Scholar 

  43. 43.

    Chen W, Zou C, Li X, Li L. Experimental investigation of SiC nanofluids for solar distillation system: stability, optical properties and thermal conductivity with saline water-based fluid. Int J Heat Mass Transf. 2017;107:264–70.

    CAS  Article  Google Scholar 

  44. 44.

    Gnanadason MK, Kumar PS, Rajakumar S, Yousuf MHS. Effect of nanofluids in a vacuum single basin solar still. IJ AERS. 2011;1:171–7.

    Google Scholar 

  45. 45.

    Parsa SM, Rahbar A, Koleini MH, Javadi YD, Afrand M, Rostami S, et al. First approach on nanofluid-based solar still in high altitude for water desalination and solar water disinfection (SODIS). Desalination. 2020;491:114592.

    CAS  Article  Google Scholar 

  46. 46.

    Kabeel AE, El-Said EMS. Applicability of flashing desalination technique for small scale needs using a novel integrated system coupled with nanofluid-based solar collector. Desalination. 2014;333:10–22.

    CAS  Article  Google Scholar 

  47. 47.

    Kabeel AE, Omara ZM, Essa FA. Enhancement of modified solar still integrated with external condenser using nanofluids: an experimental approach. Energy Convers Manag. 2014;78:493–8.

    CAS  Article  Google Scholar 

  48. 48.

    Rashidi S, Bovand M, Rahbar N, Esfahani JA. Steps optimization and productivity enhancement in a nanofluid cascade solar still. J Renew Energy. 2018;118:536–45.

    Article  Google Scholar 

  49. 49.

    Sahota L, Tiwari GN. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Sol Energy. 2016;130:260–72.

    CAS  Article  Google Scholar 

  50. 50.

    Shanmugan S, Palani S, Janarthanan B. Productivity enhancement of solar still by PCM and Nanoparticles miscellaneous basin absorbing materials. Desalination. 2018;433:186–98.

    CAS  Article  Google Scholar 

  51. 51.

    Ankoliya KV, Modi DB. Effect of nanofluid in single slope double basin solar still. Int Adv Res Innov Ideas Educ. 2016;2:1051–7.

    Google Scholar 

  52. 52.

    Paradis P-F, Ishikawa T, Saita Y, Yoda S. Non-contact thermophysical property measurements of liquid and undercooled alumina. Jpn J Appl Phys. 2004;43:1496.

    CAS  Article  Google Scholar 

  53. 53.

    Wiberg E, Wiberg N, Holleman AF. Inorganic chemistry. 1st ed. New York: Academic Press; 2001.

    Google Scholar 

  54. 54.

    Evans KA. Properties and uses of aluminium oxides and aluminium hydroxides. In: Downs AJ, editor. The chemistry of aluminium, indium and gallium. Glasgow: Blackie Academic; 1993.

    Google Scholar 

  55. 55.

    Paranjpe KY. Alpha, Beta and Gamma alumina as catalyst. Pharma Innov, J. 2017;6:236–8.

    CAS  Google Scholar 

  56. 56.

    Ma M-G, Zhu J-F. A facile solvothermal route to synthesis of γ-alumina with bundle-like and flower-like morphologies. Mater Lett. 2009;63:881–3.

    CAS  Article  Google Scholar 

  57. 57.

    Tiwari AK, Tiwari GN. Effect of the condensing cover’s slope on internal heat and mass transfer in distillation: an indoor simulation. Desalination. 2005;180:73–88.

    CAS  Article  Google Scholar 

  58. 58.

    Kirkup L, Frenkel RB. An introduction to uncertainty in measurement: using the GUM (guide to the expression of uncertainty in measurement). Cambridge: Cambridge University Press; 2006.

    Google Scholar 

  59. 59.

    Lira I. Evaluating the uncertainty of measurement: fundamentals and practical guidance. Bristol: Institute of Physics Publishing; 2002.

    Google Scholar 

  60. 60.

    Kabeel AE, Omara ZM, Essa FA. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Convers Manag. 2014;86:268–74.

    CAS  Article  Google Scholar 

  61. 61.

    Sathyamurthy R, Kabeel AE, El-Agouz ES, Rufus D, Panchal H, Arunkumar T, et al. Experimental investigation on the effect of MgO and TiO2 nanoparticles in stepped solar still. Int J Energy Res. 2019;43:3295–305.

    Article  Google Scholar 

  62. 62.

    Modi KV, Shukla DL, Ankoliya DB. A comparative performance study of double basin single slope solar still with and without using nanoparticles. J Sol Energy Eng. 2019;141.

  63. 63.

    Dsilva Winfred Rufuss D, Suganthi L, Iniyan S, Davies PA. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J Clean Prod. 2018;192:9–29.

    CAS  Article  Google Scholar 

  64. 64.

    Jani HK, Modi KV. A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices. Renew Sustain Energy Rev. 2018;93:302–17.

    Article  Google Scholar 

  65. 65.

    Khalifa AJN, Hamood AM. On the verification of the effect of water depth on the performance of basin type solar stills. Sol Energy. 2009;83:1312–21.

    CAS  Article  Google Scholar 

  66. 66.

    Elango T, Murugavel KK. The effect of the water depth on the productivity for single and double basin double slope glass solar stills. Desalination. 2015;359:82–91.

    CAS  Article  Google Scholar 

  67. 67.

    Abdelkader M, Nafy AS, Abdelmotalip A, Mabrouk AA. Experimental evaluation of solar still mathematical models. In: Fourth international water technology conference. Alexandria, Egypt (1999)

  68. 68.

    Malik MAS, Tiwari GN, Kumar A, Sodha MS. Solar distillation: a practical study of a wide range of stills and their optimum design, construction, and performance. Oxford: Pergamon Press; 1982.

    Google Scholar 

  69. 69.

    Mowla D, Karimi G. Mathematical modelling of solar stills in Iran. Sol Energy. 1995;55:389–93.

    Article  Google Scholar 

  70. 70.

    Muftah AF, Alghoul MA, Fudholi A, Abdul-Majeed MM, Sopian K. Factors affecting basin type solar still productivity: a detailed review. Renew Sustain Energy Rev. 2014;32:430–47.

    Article  Google Scholar 

Download references


Not applicable.

Author information



Corresponding author

Correspondence to Abolhasan Ameri.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasanianpour Faridani, Z., Ameri, A. Performance enhancement of a basin solar still using γ-Al2O3 nanoparticles and a mixer: an experimental approach. J Therm Anal Calorim (2021).

Download citation


  • γ-al2O3 nanoparticles
  • Basin solar still
  • Distillate yield
  • Mixer
  • Desalination