Experimental analysis of a hybrid system including refrigeration cycle and water desalination with jet pump


In this paper, designing, manufacturing, and investigating water desalination using the energy dissipated in the refrigeration cycle is conducted in an experimental study. This study attempts to absorb the heat lost in the cooling cycle and to enter the desalination cycle, and to provide the evaporation needed for the water desalination in another cycle. The vacuum required during the desalination process is provided by a jet pump. The results indicated that changing the refrigeration cycle’s condenser and receiving its dissipated energy in addition to providing the energy required for the desalination operation has not had any adverse effect on the cooling performance of the refrigeration cycle. Effect of the pressure chamber, compressor temperature, and cooling water on yield are presented. The amount of total dissolved solids obtained in this method was achieved up to 4 ppm. The results also showed that the energy-saving value in this study has been between 9.6 and 14.8 KJ.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    United Nations. World Population Prospects: The 2004 Revision-Highlights.

  2. 2.

    Hoffman AR. Water security: a growing crisis and the link to energy. AIP Conf Proc Am Inst Phys. 2008;1044(1):55–63.

    Article  Google Scholar 

  3. 3.

    Kalogirou SA. Seawater desalination using renewable energy sources. Prog Energy Combust. 2005;31(3):242–81. https://doi.org/10.1016/j.pecs.2005.03.001.

    CAS  Article  Google Scholar 

  4. 4.

    Alperin M, Wu JJ. Thrust augmenting ejectors. Part I. AIAA J. 1983;21(10):1428–36. https://doi.org/10.2514/3.60148.

    Article  Google Scholar 

  5. 5.

    Alperin M, Wu JJ. Thrust augmenting ejectors. II. AIAA J. 1983;21(12):1698–706. https://doi.org/10.2514/3.8312.

    Article  Google Scholar 

  6. 6.

    Shovon MKB, Raman SK, Suryan A, et al. Performance of ejector refrigeration cycle based on solar energy working with various refrigeration. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09319-1.

    Article  Google Scholar 

  7. 7.

    Al-Shamani AN. Evaluation of solar-assisted absorption refrigeration cycle by using a multi-ejector. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09560-8.

    Article  Google Scholar 

  8. 8.

    Low SC, Tay JH. Vacuum desalination using waste heat from a steam turbine. Desalination. 1991;81(1–3):321–31. https://doi.org/10.1016/0011-9164(91)85066-4.

    CAS  Article  Google Scholar 

  9. 9.

    Kabeel AE, Abdelgaied M, Mahmoud GM. Performance evaluation of continuous solar still water desalination system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09547-5.

    Article  Google Scholar 

  10. 10.

    Mani A. Studies on single sloped solar still. In: National Solar Energy Convention, IIT, New Delhi 1982. 17–4.

  11. 11.

    Mani A. Experimental studies on single sloped solar still. Tech Thesis, IIT, Madras. 1982

  12. 12.

    Mani A, Kumaraswamy S, Kumar RS. Utilisation of ocean thermal energy for desalination of brackish water. In: Technical Report 2002. National Institute of Technology Madras.

  13. 13.

    Kudish AI, Evseev EG, Walter G, Priebe T. Simulation study on a solar desalination system utilizing an evaporator/condenser chamber. Energy Convers Manag. 2003;44(10):1653–70. https://doi.org/10.1016/S0196-8904(02)00180-2.

    CAS  Article  Google Scholar 

  14. 14.

    Kumar RS, Mani A, Kumaraswamy S. Utilisation of ocean thermal gradient for desalination. In: International conference on coastal and ocean technology. 2003 (1);101–108.

  15. 15.

    Zejli D, Benchrifa R, Bennouna A, Bouhelal OK. A solar adsorption desalination device: first simulation results. Desalination. 2004;168:127–35. https://doi.org/10.1016/j.desal.2004.06.178.

    CAS  Article  Google Scholar 

  16. 16.

    Farwati MA. Theoretical study of multi-stage flash distillation using solar energy. Energy. 1997;22(1):1–5. https://doi.org/10.1016/S0360-5442(96)00056-4.

    CAS  Article  Google Scholar 

  17. 17.

    Joseph J, Saravanan R, Renganarayanan S. Studies on a single-stage solar desalination system for domestic applications. Desalination. 2005;173(1):77–82. https://doi.org/10.1016/j.desal.2004.06.210.

    CAS  Article  Google Scholar 

  18. 18.

    Dai YJ, Wang RZ, Zhang HF. Parametric analysis to improve the performance of a solar desalination unit with humidification and dehumidification. Desalination. 2002;142(2):107–18. https://doi.org/10.1016/S0011-9164(01)00430-1.

    CAS  Article  Google Scholar 

  19. 19.

    Kariman H, Hoseinzadeh S, Shirkhani A, Heyns PS, Wannenburg J. Energy and economic analysis of evaporative vacuum easy desalination system with brine tank. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08945-8.

    Article  Google Scholar 

  20. 20.

    Eke J, Yusuf A, Giwa A, Sodiq A. The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination. 2020;495:114633. https://doi.org/10.1016/j.desal.2020.114633.

    CAS  Article  Google Scholar 

  21. 21.

    Drozdov AN, Malyavko EA, Alekseev YL, Shashel O. Stand research and analysis of liquid–gas jet-pump. In: SPE annual technical conference and exhibition 2011 Jan 1. Society of Petroleum Engineers. doi:https://doi.org/10.2118/146638-MS.

  22. 22.

    Takashima Y. Studies on liquid jet gas pumps. J Sci Res Inst. 1952;46:230–46.

    CAS  Google Scholar 

  23. 23.

    Witte JH. Mixing shocks and their influence on the design of liquid–gas ejectors. University of Delft; 1962.

  24. 24.

    Kumar RS, Mani A, Kumaraswamy S. Analysis of a jet-pump-assisted vacuum desalination system using power plant waste heat. Desalination. 2005;179(1–3):345–54. https://doi.org/10.1016/j.desal.2004.11.081.

    CAS  Article  Google Scholar 

  25. 25.

    Kumar RS, Mani A, Kumaraswamy S. Experimental studies on desalination system for ocean thermal energy utilisation. Desalination. 2007;207(1–3):1–8. https://doi.org/10.1016/j.desal.2006.08.001.

    CAS  Article  Google Scholar 

  26. 26.

    Elminshawy NA, Siddiqui FR, Sultan GI. Development of a desalination system driven by solar energy and low grade waste heat. Energy Convers Manag. 2015;103:28–35. https://doi.org/10.1016/j.enconman.2015.06.035.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseini, A., Noghrehabadi, A.R. & Behbahani-nejad, M. Experimental analysis of a hybrid system including refrigeration cycle and water desalination with jet pump. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-021-10560-5

Download citation


  • Desalination
  • Jet pump
  • Energy-saving
  • Surface evaporation
  • Ocean thermal energy conversion