Thermal behavior of different cocoa powder varieties and their physicochemical, phytochemical and microbiological characteristics

Abstract

Four cocoa powder varieties processed in different European countries (Germany, Poland, Romania and Bulgaria) were subjected to physicochemical, phytochemical and microbiological analysis. The cocoa powders were extensively characterized by recording their pH and titratable acidity, respectively, the polyphenols and also the methylxantine derivatives content (theobromine and caffeine). The cocoa powders pH ranged between 5.37 and 8.23, while the titratable acidity was 3.2–4.3 miliequivalent (100 g)−1 of cocoa powder. Their total polyphenols content ranged between 0.986 ÷ 2.003 g GAE/(100 g)−1. The methylxanthine derivatives (theobromine and caffeine) were analyzed by the HPLC method and ranges of 0.992–1.174% for theobromine and 0.096–0.369% for caffeine were obtained. Thermal analysis (TG–DTA) combined with mass spectrometry (MS) elucidated the decomposition processes and the volatile substances (CO, CO2, H2O, NO, theobromine, caffeine). The thermal analysis revealed transformations in the cocoa powders composition: drying and water loss; decomposition of pectic polysaccharides; lipids, amino acids and proteins, crystalline phase transformations and carbonizations. The microbiological analysis tested the degree of preservation of the cocoa powders across time, specifically immediately after unwrapping and after 14 days.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Wollgast J, Anklam E. Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Res Int. 2000;33(6):423–47.

    CAS  Article  Google Scholar 

  2. 2.

    Motamayor J.C., Lachenaud P., da Silva e Mota J.W., Loor R., Kuhn D.N., Brown J.S. Geographic and genetic population differentiation of the amazonian chocolate tree (Theobroma cacao L.). PLoS ONE, 2008, 3(10): e3311.

  3. 3.

    Argout X, Salse J, Aury J, Guiltinan MJ, Droc G, Gouzy J, Mccombie WR. The genome of Theobroma cacao. Berlin: Nature Publishing Group; 2011. p. 43.

    Google Scholar 

  4. 4.

    Motamayor JC, Risterucci AM, Lopez PA, Ortiz CF, Moremo A, Lanaud C. Cacao domestication I : the origin of the cacao cultivated by the Mayas. Heredity. 2002;89:380–6.

    CAS  Article  Google Scholar 

  5. 5.

    Tuenter E, Delbaere C, Winne ADE, Custers D, Foubert K, Durme JVAN. Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Res Int. 2019;130:108943.

    Article  Google Scholar 

  6. 6.

    Hu S, Kim B, Baik M. Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chem. 2016;194:1089–94.

    CAS  Article  Google Scholar 

  7. 7.

    Huang X, Teye E, Owusu-Sekyere JD, Takrama J, Sam-Amoah LK, Yao L, Firempong CK. Simultaneous measurement of titratable acidityand fermentation index in cocoa beans by electronic tongue together with linear and non-linear multivariate technique. Food Anal Methods. 2014;7:2137–44.

    Article  Google Scholar 

  8. 8.

    Brunetto MR, Gutierrez L, Delgado Y, Gallignani M, Zambrano A, Gomez A, Ramos G, Romero C. Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chem. 2007;100:459–67.

    CAS  Article  Google Scholar 

  9. 9.

    Bourchers T, Keen CL, Hannum SM, Gershwin ME. Cocoa and chocolate: composition, bioavailability, and health implications. J Med Food. 2000;3(2):77–105.

    Article  Google Scholar 

  10. 10.

    Gabbay Alves G., Silva da Costa R., Aguiar Gomes, A.T., Quality control of Amazonian cocoa (Theobroma cacao L.) by-products and microencapsulated extract by thermal analysis. J Therm Anal Calorim. 2018; 134, 993–1000.

  11. 11.

    Popescu L, Mateescu M, Bajaš D. Study of thermally induced interactions between theobromine and various sweeteners. J Therm Anal Calorim. 2019;138:2347–56.

    CAS  Article  Google Scholar 

  12. 12.

    Du Y, Jiang X, Lv G, Li X, Chi Y, Yan J, Liu X, Buekens A. TG-pyrolysis and FTIR analysis of chocolate and biomass waste. J Therm Anal Calorim. 2014;117(1):343–53.

    CAS  Article  Google Scholar 

  13. 13.

    Sandoval A.J., Barreiro J.B., De Sousa A., Valera D., López J.V., Müller A.J. Composition and thermogravimetric characterization of components of venezuelan fermented and dry trinitario cocoa beans (Theobroma cacao L.): whole beans, peeled beans and shells. Rev Téc Ing Univ Zulia. 2018; 41 (1), 41–47.

  14. 14.

    Aprotosoaie AC, Luca SV, Miron A. Flavor chemistry of cocoa and cocoa products: an overview. Compr Rev Food Sci F. 2015;15(1):73–91.

    Article  Google Scholar 

  15. 15.

    Gabis DA, Langlois BE, Rudnick AW. Microbiological examination of cocoa powder. Appl Microbiol. 1970;20(4):644–5.

    CAS  Article  Google Scholar 

  16. 16.

    Miller KB, Hurst WJ, Payne MJ, Stuart DA, Apgar J, Sweigart DS, Ou B. Impact of alkalization on the antioxidant and flavanol content of commercial cocoa powders. J Agric Food Chem. 2008;56:8527.

    CAS  Article  Google Scholar 

  17. 17.

    Titiek FD, Dhea CM, Tri M, Priyanto T, Endang SR. Microbiology, chemical, and sensory characteristics of cocoa powder: the effect of Lactobacillus plantarum HL-15 as culture starter and fermentation box variation. Digital Press Life Sciences. 2020;2:00008.

    Article  Google Scholar 

  18. 18.

    Nielsen SD, Crafack M, Jespersen L, Jakobsen M. The microbiology of cacao fermentation. Chocolate Health Nutr. 2012;7:39–60.

    Google Scholar 

  19. 19.

    Srdjenovic B, Djordjevic-Milic V, Grujic N, Injac R, Lepojevic Z. Simultaneous HPLC determination of caffeine, theobromine, and theophylline in food, drinks, and herbal products. J Chromatogr Sci. 2008;46:144–9.

    CAS  Article  Google Scholar 

  20. 20.

    Dong MW. Modern HPLC for practicing scientists. Hoboken: Wiley; 2006.

    Google Scholar 

  21. 21.

    Riaz S, Park S-J. Effective reinforcement of melamine-functionalized WS2 nanosheets in epoxy nanocomposites at low loading via enhanced interfacial interaction. Macromol Res. 2020;28(12):1116–26.

    Article  Google Scholar 

  22. 22.

    Riaz S, Park S-J. Thermal and mechanical interfacial behaviors of graphene oxide-reinforced epoxy composites cured by thermal latent catalyst. Materials. 2019;12:1354.

    CAS  Article  Google Scholar 

  23. 23.

    ISO 4833–1:2013. Microbiology of the food chain: horizontal method for the enumeration of microorganisms Part 1: colony count at 30 degrees C by the pour plate technique.

  24. 24.

    SR EN ISO 7954–2001. General directives for enumeration of yeasts and molds. Colony count technique at 25°C.

  25. 25.

    ISO 21528–2:2004. Microbiology of food and animal feeding stuffs: horizontal methods for the detection and enumeration of Enterobacteriaceae: Part 2: colony-count method

  26. 26.

    Moser A. Alkalizing cocoa and chocolate. Manuf Conf. 2015; 31–38.

  27. 27.

    Lacueva CA, Monagas M, Khan N, Izquterdo-Pulido M, Urpi-Sarda M, Permanyer J, Lamuela-Raventó SRM. Flavanolandflavonol contents of cocoa powder products: influence of the manufacturing process. J Agric Food Chem. 2008;56(9):3111–7.

    Article  Google Scholar 

  28. 28.

    Carmona VL, Meneses VA. Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. J Supercritical Fluids. 2018;88:99–105.

    Article  Google Scholar 

  29. 29.

    Servent A. Assessment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations. Food Res Int. 2018; 107, 675–682

  30. 30.

    Genovese MI, Lannes SCS. Comparison of total phenolic content and antiradical capacity of powders and “chocolates” from cocoa and cupuassu. Ciência e Tecnologia de Alimentos. 2009;29:810–4.

    Article  Google Scholar 

  31. 31.

    Belščak A, Komes D, Horžić D, Kovačević GK, Karlović D. Comparative study of commercially available cocoa products in terms of their bioactive composition. Food Res Int. 2009;42:707–16.

    Article  Google Scholar 

  32. 32.

    Rodriguez-Carrasco Y, Gaspari A, Graziani G, Santani A. Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-highperformance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Res Int. 2018;111:229–36.

    CAS  Article  Google Scholar 

  33. 33.

    Li Y, Feng Y, Zhu S, Luo C, Ma J, Zhong F. The effect of alkalization on the bioactive and flavor-related components in commercial cocoa powder. J Food Compos Anal. 2012;25:17–23.

    Article  Google Scholar 

  34. 34.

    Afoakwa EO, Paterson A, Fowler M, Ryan A. Flavor formation and character in cocoa and chocolate: a critical review. Crit Rev Food Sci Nutr. 2008;48(9):840–57.

    CAS  Article  Google Scholar 

  35. 35.

    Quelal-Vásconez MA, Lerma-García MJ, Pérez-Esteve E, Arnau-Bonachera A, Barat JM, Talens P. Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. LWT-Food Sci Technol. 2020;117:108598.

    Article  Google Scholar 

  36. 36.

    Mladenovic K, Root Y, Ramanathan D. UHPLC-HRMS analysis of theobromine in theobroma cacao and its products. J Nutr Food Sci. 2018;8:6.

    Google Scholar 

  37. 37.

    Nigam PS, Singh A. Cocoa and coffee fermentations. In: Batt CA, Tortorello ML, editors. Encyclopedia of food microbiology. 2nd ed. San Diego: Academic Press; 2014. p. 485–92.

    Google Scholar 

  38. 38.

    Aprotosoaie AC, Stanescu U. Alkaloids-biogene compounds with therapeutic use. Iasi: Gr. T. Popa Publishing House; 2010.

    Google Scholar 

  39. 39.

    Urbanska B, Derewiaka D, Lenart A, Kowalsk L. Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. Eur Food Res Technol. 2019;245:2101–12.

    CAS  Article  Google Scholar 

  40. 40.

    Todorovic V., Radojcic-Redovnikovic, Todorovic Z., Jankovic G., Dodevska M., Sobajic S. Polyphenols, methylxanthines, and antioxidant capacity of chocolates produced in Serbia. J Food Compos Anal. 2015; 41, 137–143.

  41. 41.

    Ho VTT, Zhao J, Fleet G. Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol. 2014;174:72–87.

    CAS  Article  Google Scholar 

  42. 42.

    Li Y, Zhu S, Feng Y, Xu F, Ma J, Zhong F. Influence of alkalization treatment on the color quality and the total phenolic and anthocyanin contents in cocoa powder. Food Sci Biotechnol. 2014;23:59–63.

    CAS  Article  Google Scholar 

  43. 43.

    Quelal-Vásconez MA, Lerma-García MJ, Pérez-Esteve E, Talens P, Barat JM. Roadmap of cocoa quality and authenticity control in the industry: a review of conventional and alternative methods. Compr Rev Food Sci Food Saf. 2019. https://doi.org/10.1111/1541-4337.12522.

    Article  Google Scholar 

  44. 44.

    Dippong T., Gati B., Mihali C., Goga Fi. Comparative study of thermal decomposition of several assortment of infant formula. Sci Bull D 2015; 29 (2) 45–52.

  45. 45.

    Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs

  46. 46.

    Lima LJR, Van Der Velpen V, Wolkers-Rooijackers HJ, Kamphuis MH, Nout RMJ. Microbiota dynamics and diversity at different stages of industrial processing of cocoa beans into cocoa powder. Appl Environ Microbiol. 2012;78(8):2904–13.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Dippong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dippong, T., Mihali, C., Vosgan, Z. et al. Thermal behavior of different cocoa powder varieties and their physicochemical, phytochemical and microbiological characteristics. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-021-10559-y

Download citation

Keywords

  • Cocoa powder
  • HPLC
  • TG–DTA-MS
  • Polyphenols
  • Microbiological analysis