Skip to main content
Log in

Experimental investigation and thermodynamic modeling of CO2 absorption by a chemical solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The capture of acid gases such as CO2 and H2S is one of the most important processes in the oil, gas, and petrochemical industries. In this study, the absorption of CO2 by AMP solution is investigated experimentally in the presence and absence of ionic liquid choline chloride. For this purpose, a high-pressure gaseous absorption system is designed and fabricated. The amount of CO2 absorption at the temperatures of 278.18, 293.15, and 333.3 K, and CO2 partial pressure range of 1 to 10 bar is measured. The experimental results demonstrate that the CO2 absorption increases by increasing the pressure and decreasing the temperature of the system. In addition, as the mass percentage of choline chloride increases, the rate of CO2 absorption increases and CO2 absorption capacity decreases. Also, CO2 absorption is calculated based on the modified Kent-Eisenberg thermodynamic model using MATLAB software. It is revealed that the experimental results are in very good agreement with those obtained from thermodynamic modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang H, Zhang J, Wang G, Wang O, Song T. High-temperature capture of CO2 by Li4SiO4 prepared with blast furnace slag and kinetic analysis. J Therm Anal Calorim. 2018;133:981–9.

    Article  CAS  Google Scholar 

  2. Majchrzak-Kucęba I, Ściubidło A. Shaping metal–organic framework (MOF) powder materials for CO2 capture applications—a thermogravimetric study. J Therm Anal Calorim. 2019;138:4139–44.

    Article  Google Scholar 

  3. Dallos A, Altsach T, Kotsis L. Enthalpies of absorption and solubility of carbon dioxide in aqueous polyamine solutions. J Therm Anal Calorim. 2001;65:419–23.

    Article  CAS  Google Scholar 

  4. Vahidi M, Matin NS, Goharrokhi M, Jenab MH, Abdi MA, Najibi SH. Correlation of CO2 solubility in N-methyldiethanolamine+piperazine aqueous solutions using extended Debye-Hückel model. J Chem Thermodyn. 2009;41(11):1272–8.

    Article  CAS  Google Scholar 

  5. Palgunadi J, Kang JE, Nguyen DQ, Kim JH, Min BK, Lee SD, Kim H, Kim HS. Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids. Thermochim Acta. 2009;494:94–8.

    Article  CAS  Google Scholar 

  6. Wang C-W, Soriano AN, Yang Z-Y, Li M-H. Solubility of carbon dioxide in the solvent system (2-amino-2-methyl-1-propanol+sulfolane+water). Fluid Phase Equilib. 2010;291(2):195–200.

    Article  CAS  Google Scholar 

  7. Aronu U, Gondal S, Hessen ET, Haug-Warberg T, Hartono A, Hoff K, Svendsen H. Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120 °C and model representation using the extended UNIQUAC framework. Chem Eng Sci. 2011;66(24):6393–406.

    Article  CAS  Google Scholar 

  8. Zhang Y, Que H, Chen C-C. Thermodynamic modeling for CO2 absorption in aqueous MEA solution with electrolyte NRTL model. Fluid Phase Equilib. 2011;311:67–75.

    Article  CAS  Google Scholar 

  9. Majchrowicz ME, Brilman DWF. Solubility of CO2 in aqueous potassium l-prolinate solutions—absorber conditions. Chem Eng Sci. 2012;72:35–44.

    Article  CAS  Google Scholar 

  10. Kim YE, Choi JH, Nam SC, Yoon YI. CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine. J Ind Eng Chem. 2012;18(1):105–10.

    Article  CAS  Google Scholar 

  11. Torres Pineda I, Lee JW, Jung T, Kang YT. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. Int J Refrig. 2012;35(5):1402–9.

    Article  CAS  Google Scholar 

  12. Adeyemi I, Abu-Zahra MRM, Alnashef I. Experimental study of the solubility of CO2 in novel amine based deep eutectic solvents. Energy Procedia. 2017;105:1394–400.

    Article  CAS  Google Scholar 

  13. Vega LF, Vilaseca O, Llovell F, Andreu JS. Modeling ionic liquids and the solubility of gases in them: Recent advances and perspectives. Fluid Phase Equilib. 2010;294(1):15–30.

    Article  CAS  Google Scholar 

  14. Leron RB, Caparanga A, Li M-H. Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T=303.15–343.15K and moderate pressures. J Taiwan Inst Chem Eng. 2013;44(6):879–85.

    Article  CAS  Google Scholar 

  15. Isaifan RJ, Amhamed A. Review on carbon dioxide absorption by choline chloride/urea deep eutectic solvents. Adv Chem. 2018. https://doi.org/10.1155/2018/2675659.

    Article  Google Scholar 

  16. Aghaie M, Rezaei N, Zendehboudi S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew Sustain Energy Rev. 2018;96:502–25.

    Article  CAS  Google Scholar 

  17. Bohloul MR, Vatani A, Peyghambarzadeh SM. Experimental and theoretical study of CO2 solubility in N-methyl-2-pyrrolidone (NMP). Fluid Phase Equilib. 2014;365:106–11.

    Article  CAS  Google Scholar 

  18. Baj S, Siewniak A, Chrobok A, Krawczyk T, Sobolewski A. Monoethanolamine and ionic liquid aqueous solutions as effective systems for CO2 capture. J Chem Technol Biotechnol. 2013;88(7):1220–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Bayareh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansarypur, G., Bayareh, M. & Jahangiri, A. Experimental investigation and thermodynamic modeling of CO2 absorption by a chemical solution. J Therm Anal Calorim 147, 1689–1697 (2022). https://doi.org/10.1007/s10973-021-10554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10554-3

Keywords

Navigation