An integrated absorption cooling technology with thermoelectric generator powered by solar energy


A novel integrated solar absorption refrigeration system with a thermoelectric generator and thermoelectric cooler is presented. The proposed system is of a 20-kW single-stage lithium bromide absorption cycle driven by solar evacuated tube collectors or by the heat rejected by the thermoelectric cooler module. The governing equations of the thermodynamic model are solved, and the results are validated. It was found that the coefficient of performance of the system approaches a constant value at a generator temperature of 100 °C. The best performance of the system was found in the case of placing the thermoelectric cooler between the generator and the condenser. The coefficient of performance and the overall thermal efficiency were found to be 1.12 and 73.4%, respectively. Furthermore, a 20% rise in the generator temperature would increase the power produced by thermoelectric generator modules by 60%. An increase of 20% in the thermoelectric generator modules would result in a reduction of 11.5% in its efficiency, while doubling the temperature difference would increase the generated power by a factor of three.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 8
Fig. 9
Fig. 10
Fig. 12
Fig. 13


A n&A p :

Legs cross-sectional area (mm2)


Absorption cooling systems




Coefficient of Performance

C p :

Specific heat of water (J kg−1 K−1)


Evacuated tube collector


Engineering Equations Solver


Green House Gases

h :

Enthalpy (kJ kg−1)

I :

The electrical current, (A)

K t :

TEC thermal conductivity, (J (s m K)−1)


The total thermal conductance of TEG


Log mean temperature difference

L n&L P :

Length of legs (mm)


Mass flow rate, (kg s−1)

N :

Number of modules

N c :

Number of thermocouples


Power of TEC, (kW)

P :

Electric power, (W)

Q :

cooling capacity, (kW)


Thermoelectric cooler capacity, (kW)

Qtot :

Total cooling capacity, (kW)

Q a :

Absorber cooling capacity, (kW)

Q c :

Condenser cooling capacity, (kW))

Q g :

Generator cooling capacity, (kW)

Q e :

Evaporator cooling capacity, (kW)

q r :

Radiation heat losses, (W)

q h :

The heat transferred to the hot junction, (kW)

q :

Heat transfer rate, W m−2

q L :

The heat transferred to the cold junction, (kW)

q t :

Total received energy, (W)

q u :

Useful transferred thermal energy, (W)

R :

The electrical resistance of TEG, (Ω)


Reynolds number

R L :

A load of resistance (Ω)


Solution heat exchanger

T am :

Ambient Temperature, (K)

T :

Temperature, (K)

T L :

Low temperature, (K)

T H :

High temperature, (K)

T g :

The generator temperature, (K)

T c :

The condenser temperature, (K)

T e :

The evaporator temperature, (K)


Thermoelectric cooler


Thermoelectric generator

T a :

The surrounding temperature


The product of overall heat transfer coefficient and area, (W K−1)


Vapor absorption cooler


Pump work, (kW)


Mass fraction of LiBr

Єg :

The glass layer emissivity


Stephan–Boltzmann constant (W m−2 K−4)

ρ n&ρ p :

Electrical resistivity of legs (Ω cm)

ε :


τ :

The transmittance of the glass tube

α :


ε SHX :

The solution heat exchanger effectiveness

η overall :

The overall efficiency of the (ACS and TEG )

η sys :

Total system efficiency

η :











Hot junction


Cold junction


  1. 1.

    Yang L, Yan H, Lam JC. Thermal comfort and building energy consumption implications—A review. Appl Energy. 2014;115(S):164–73.

    Article  Google Scholar 

  2. 2.

    Afonso CF. Recent advances in building air conditioning systems. Appl Therm Eng. 2006;26(16):1961–71.

    CAS  Article  Google Scholar 

  3. 3.

    Elakhdar M, Tashtoush BM, Nehdi E, Kairouani L. Thermodynamic analysis of a novel Ejector Enhanced Vapor Compression Refrigeration (EEVCR) cycle. Energy. 2018;163:1217–30.

    CAS  Article  Google Scholar 

  4. 4.

    Tashtoush B. Natural losses from vegetable and fruit products in cold storage. Food Control. 2000;11(6):465–70.

    Article  Google Scholar 

  5. 5.

    Smith LG, Kirk GJ, Jones PJ, Williams AG. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat Commun. 2019;10(1):1–10.

    CAS  Article  Google Scholar 

  6. 6.

    Tashtoush BM, Al-Nimr MA, Khasawneh MA. Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system. Appl Energy. 2017;206:1446–63.

    CAS  Article  Google Scholar 

  7. 7.

    Chel A, Kaushik G. Renewable energy technologies for sustainable development of energy efficient building. Alexandria Eng J. 2018;57(2):655–69.

    Article  Google Scholar 

  8. 8.

    Megdouli K, Tashtoush BM, Nahdi E, Elakhdar M, Kairouani L, Mhimid A. Thermodynamic analysis of a novel ejector-cascade refrigeration cycles for freezing process applications and air-conditioning. Int J Refrig. 2016;70:108–18.

    CAS  Article  Google Scholar 

  9. 9.

    Tashtoush B, Nayfeh Y. Energy and economic analysis of a variable-geometry ejector in solar cooling systems for residential buildings. J Energy Storage. 2020;27:101061.

    Article  Google Scholar 

  10. 10.

    Modi A, Bühler F, Andreasen JG, Haglind F. A review of solar energy based heat and power generation systems. Renew Sustain Energy Rev. 2017;67:1047–64.

    Article  Google Scholar 

  11. 11.

    Tashtoush B, Algharbawi A. Parametric study of a novel hybrid solar variable geometry ejector cooling with organic rankine cycles. Energy Convers Manag. 2019;198:111910.

    Article  Google Scholar 

  12. 12.

    Chen X, Su Y, Omer S, Riffat S. Theoretical investigations on combined power and ejector cooling system powered by low-grade energy source. Int J Low-Carbon Technol. 2016;1194:466–75.

    CAS  Article  Google Scholar 

  13. 13.

    Tashtoush B, Bani YM. Comparative Thermodynamic study of refrigerants to select the best environment-friendly refrigerant for use in a solar ejector cooling system. Arab J Sci Eng. 2019;44(2):1165–84.

    CAS  Article  Google Scholar 

  14. 14.

    Aboelwafa O, Fateen SE, Soliman A, Ismail M. A review on solar Rankine cycles: working fluids, applications, and cycle modifications. Renew Sustain Energy Rev. 2017;82:868–85.

    CAS  Article  Google Scholar 

  15. 15.

    Yilbas BS, Sahin AZ. Thermal characteristics of combined thermoelectric generator and refrigeration cycle. Energy Convers Manag. 2014;83:42–7.

    Article  Google Scholar 

  16. 16.

    Kizilkan O, Khanmohammadi S, Saadat-Targhi M. Solar based CO2 power cycle employing thermoelectric generator and absorption refrigeration: thermodynamic assessment and multi-objective optimization. Energy Convers Manage. 2019;200:112072.

    CAS  Article  Google Scholar 

  17. 17.

    Wonchala J, Hazledine M, Goni BK. Solution procedure and performance evaluation for a water LiBr absorption refrigeration machine. Energy. 2014;65:272–84.

    CAS  Article  Google Scholar 

  18. 18.

    Li Z, Liu L, Liu J. Variation and design criterion of heat load ratio of generator for air cooled lithium bromide water double effect absorption chiller. Appl Therm Eng. 2016;96:481–9.

    CAS  Article  Google Scholar 

  19. 19.

    Ma Y, Zhang X, Liu M, Yan J, Liu J. Proposal and assessment of a novel supercritical CO2 Brayton cycle integrated with LiBr absorption chiller for concentrated solar power applications. Energy. 2018.

    Article  Google Scholar 

  20. 20.

    Kaushik SC, Arora A. Energy and exergy analysis of single effect and series flow double effect water lithium bromide absorption refrigeration systems. Int J Refrig. 2009;32(6):1247–58.

    CAS  Article  Google Scholar 

  21. 21.

    Al-Shamani AN. Evaluation of solar-assisted absorption refrigeration cycle by using a multi-ejector. J Therm Anal Calorim. 2020.

    Article  Google Scholar 

  22. 22.

    Sun J, Fu L, Zhang S. A review of working fluids of absorption cycles. Renew Sustain Energy Rev. 2012;16(4):1899–906.

    CAS  Article  Google Scholar 

  23. 23.

    Ketfi O, Merzouk M, Kasbadji N, El Metenani S. Performance of a single effect solar absorption cooling system. Energy Proc. 2015;74:130–8.

    CAS  Article  Google Scholar 

  24. 24.

    Gupta A, Anand Y, Anand S, et al. Thermodynamic optimization and chemical exergy quantification for absorption-based refrigeration system. J Therm Anal Calorim. 2015;122:893–905.

    CAS  Article  Google Scholar 

  25. 25.

    Li Z, Ye X, Liu J. Performance analysis of solar air cooled double effect LiBr/H2Oabsorption cooling system in subtropical city. Energy Convers Manage. 2014;85:302–12.

    CAS  Article  Google Scholar 

  26. 26.

    Lowenstein A, Slayzak S, Kozubal E. A zero carryover liquid-desiccant air conditioner for solar applications. Int Sol Energy Conf. 2007;2(1):397–407.

    Article  Google Scholar 

  27. 27.

    Islam S, Dincer I, Yilbas BS. Development, analysis and assessment of solar energy-based multigeneration system with thermoelectric generator. Energy Convers Manage. 2018;156:746–56.

    CAS  Article  Google Scholar 

  28. 28.

    Mittal V, Kasana K, Thakur N. The study of solar absorption air-conditioning systems. J Energy Southern Africa. 2005;16(4):59–66.

    Article  Google Scholar 

  29. 29.

    Anand S, Gupta A, Tyagi SK. Comparative thermodynamic analysis of a hybrid refrigeration system for promotion of cleaner technologies. J Therm Anal Calorim. 2014;117:1453–68.

    CAS  Article  Google Scholar 

  30. 30.

    Li ZF, Sumathy K. Technology development in the solar absorption air-conditioning systems. Renew Sustain energy Rev. 2000;4(3):267–93.

    Article  Google Scholar 

  31. 31.

    Shaikh A, Khurshid I, Memon AG, Deep A, Hussain T. Thermodynamic analysis of combined vapor compression and vapor absorption refrigeration system. J Eng Technol. 2017;36(3):733–40.

    Google Scholar 

  32. 32.

    Ábrego Castillo JC, La Geo S. Cost estimation of using an absorption refrigeration system with geothermal energy for industrial applications in El salvador. Mech Mach Theory. 2007;3(4):30.

    Google Scholar 

  33. 33.

    Pachbhai JS, Adarkar LP, Vaidya AS, Namdeo RO. Review of vapour absorption system and vapour compression system. Int Res J Eng Technol. 2017;4(1):251–5.

    Google Scholar 

  34. 34.

    Mittal V, Kasana KS, Thakur NS. Modeling and simulation of a solar absorption cooling system for India. J Energy South Africa. 2006;17(3):65–70.

    Article  Google Scholar 

  35. 35.

    Mahesh A, Kaushik SC. Solar adsorption refrigeration system using different mass of adsorbents. J Therm Anal Calorim. 2013;111(1):897–903.

    CAS  Article  Google Scholar 

  36. 36.

    Babu B, Yadav GM. Performance analysis of lithium-bromide water absorption refrigeration system using waste heat of boiler flue gases”. Int J Eng Res Manag. 2015;2(2):42–7.

    Google Scholar 

  37. 37.

    Abdulateef J, Alghoul M, Zaharim A, Sopian K. Experimental investigation on solar absorption refrigeration system in Malaysia. Renew Energy Sour. 2010;2(3):267–71.

    Google Scholar 

  38. 38.

    Yadav M, Saikhedkar NK. Simulation modeling for the performance of vapor absorption refrigeration system using evacuated tube collector and parabolic disc collector working in conjugate system. Int Res J Eng Technol. 2017;4(4):3552–8.

    Google Scholar 

  39. 39.

    Chien ZJ, Cho HP, Jwo CS, Chien CC, Chen SL, Chen YL. Experimental investigation on an absorption refrigerator driven by solar cells. Int J Photoenergy. 2013.

    Article  Google Scholar 

  40. 40.

    Al-Nimr MA, Tashtoush BM, Khasawneh MA, Al-Keyyam I. A hybrid concentrated solar thermal collector/thermo-electric generation system. Energy. 2017;134:1001–12.

    Article  Google Scholar 

  41. 41.

    Fattahpour Moazzez A, Naja G, Ghobadian B, Hoseini S. Numerical simulation and experimental investigation of air cooling system using thermoelectric cooling system. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  42. 42.

    Manikandan S, Selvam C, Praful PPS, Lamba R, Kaushik SC, Zhao D, Yang R. A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  43. 43.

    Ewe WE, Fudholi A, Yen CH, Asim N, Sopian K. Performance of solar air collector-thermoelectric hybrid system. IOP Conf Ser Earth Environ Sci. 2019;268(1):350–90.

    Article  Google Scholar 

  44. 44.

    Kwan TH, Wu X, Yao Q. Bidirectional operation of the thermoelectric device for active temperature control of fuel cells. Appl Energy. 2018;222:410–22.

    Article  Google Scholar 

  45. 45.

    Dziurdzia P. Modeling and Simulation of Thermoelectric Energy Harvesting Processes. Sustain Energy Harvest Technol—Past Present Futur. 2011;2:110–28.

    Google Scholar 

  46. 46.

    Winkler J, Radermacher R. Potential benefits of thermoelectric element used with air-cooled heat exchangers. Int Refrig Air Cond Conf Purdue. 2006;20(17):1–9.

    Google Scholar 

  47. 47.

    Nesarajah M, Frey G. Thermoelectric power generation: Peltier element versus thermoelectric generator. IECON Proc Ind Electron Conf. 2016;16(3):4252–7.

    Article  Google Scholar 

  48. 48.

    Twaha S, Zhu J, Yan Y, Li B. A comprehensive review of thermoelectric technology: materials, applications, modeling and performance improvement. Renew Sustain Energy Rev. 2016;65:698–726.

    CAS  Article  Google Scholar 

  49. 49.

    Afshari F. Experimental and numerical investigation on thermoelectric coolers for comparing air-to-water to air-to-air refrigerators. J Therm Anal Calorim. 2020.

    Article  Google Scholar 

  50. 50.

    Tozer R, Syed A, Maidment G. Extended temperature–entropy (T–s) diagrams for aqueous lithium bromide absorption refrigeration cycles. Int J Refrig. 2005;28:689–97.

    CAS  Article  Google Scholar 

  51. 51.

    Al-Nimr M, Tashtoush B, Hasan A. A novel hybrid solar ejector cooling system with thermoelectric generators. Energy. 2020;198(C):17318.

    Article  Google Scholar 

  52. 52.

    Picón-núñez M, Martínez-Rodríguez G, Fuentes-Silva AL. Targeting and design of evacuated-tube solar collector networks. Chem Eng Trans. 2006;52:859–64.

    Article  Google Scholar 

  53. 53.

    Boukhanouf R, Supasuteekul A. Theoretical analysis of an integrated thermoelectric-absorption cooling system. Int J Low Carbon Technol. 2007;2(1):52–64.

    Article  Google Scholar 

  54. 54.

    Herold KE, Radermacher R, Klein SA. Absorption chillers and heat pumps, vol. 2. Boca Raton: CRC Press; 2013.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Bourhan Tashtoush.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tashtoush, B., Qaseem, H. An integrated absorption cooling technology with thermoelectric generator powered by solar energy. J Therm Anal Calorim (2021).

Download citation


  • Absorption chiller
  • Thermoelectric cooler
  • Thermoelectric generator
  • Energy efficiency
  • Coefficient of performance