The performance evaluation of a low-temperature adiabatic calorimeter with melting parameters and purity measurement of the benzene

Abstract

A low-temperature adiabatic calorimeter was developed by Shandong Nonmetallic materials Institute in 2019, and the structure and mechanism were introduced briefly in this work. The heat capacities of the sample cells were measured and evaluated to improve the accuracy of the device. A high-purity benzene sample was selected as test sample to evaluate it molar heat capacity among the solid, solid–liquid interface and liquid state, and the results were generally consistent with the literature values. The melting point and molar heat enthalpy were calculated as 278.221 K and 9.814 kJ mol−1 based on the Raoult’s law, respectively. Measurement results were compared with literature data, and that indicated the adiabatic calorimeter possessed adequate accuracy in the thermodynamic properties measurement. A remarkable curvature of T − 1/F curve was appeared, and further researches were necessary to amend the purity calculation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Shi Q, Tan ZC, Yin N. Low temperature calorimetry and its application in material research (in Chinese). Chin Sci Bull. 2016;61:3100–14.

    Article  Google Scholar 

  2. 2.

    Zhong Q, Dong X, Zhao Y, Wang J, Zhang H, et al. Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data of compressed liquid R1234yf. Thermodyn: J. Chem; 2018.

    Google Scholar 

  3. 3.

    Magee JW, Deal RJ, Blanco JC. High-temperature adiabatic calorimeter for constant-volume heat capacity measurements of compressed gases and liquids. J. Res. Natl. Inst. Stand. Technol. 1998;103:63–75.

    CAS  Article  Google Scholar 

  4. 4.

    Tan ZC, Shi Q, Liu BP, Zhang HT. A fully automated adiabatic calorimeter for heat capacity measurement between 80 and 400 K. J Therm Anal Cal. 2008;92(2):367–74.

    CAS  Article  Google Scholar 

  5. 5.

    Radzhabova LM, Stepanov GV, Abdulagatov IM, Shakhbanov KA. Experimental study of the isochoric heat capacity and liquid-gas coexistence-curve properties of sec-butanol in the near and supercritical regions. Thermochim Acta. 2014;575:97–113.

    CAS  Article  Google Scholar 

  6. 6.

    Wang MH, Tan ZC, Sun XH, Zhang HT, Liu BP, et al. Determination of heat capacities and thermodynamic properties of 2-(Choromethylthio)benzothiazole by an adiabatic calorimeter. J Chem Eng Data. 2005;50:270–3.

    CAS  Article  Google Scholar 

  7. 7.

    Schiesser JM, Woodfield BF. Lattice vacancies responsible for linear dependence of low-temperature heat capacity of insulating materials. Phys Rev B. 2015;91:024109.

    Article  Google Scholar 

  8. 8.

    Sorai M, Nakazawa Y, Nakano M, et al. Update 1 of: calorimetric investigation of phase transitions occurring in molecule-based magnets. Chem Rev. 2013;113:41–122.

    Article  Google Scholar 

  9. 9.

    Tanaka K, Higashi Y, Akasaka R. Measurements of the isobaric specific heat capacity and density for HFO-1234yf in liquid state. J Chem Eng Data. 2009;55:901–3.

    Article  Google Scholar 

  10. 10.

    Luo JP, Yin N, Zhang Q, Wu B, Wang SY, et al. Relaxation calorimetry and its application in low temperature specific heat study of solids (in Chinese). Sci. Sin. Chim. 2019;49:953–65.

    Article  Google Scholar 

  11. 11.

    Xu ZQ, Tang ZA, Huang ZX, Ding HT. Study on automated test system of thermal diffusivity of thin films based on AC calorimetric method (in Chinese). Chin J Sci Instrum. 2005;26(8):797–800,821.

  12. 12.

    Kuroki T, Kagawa N, Endo H, Tsuruno S, Magee JW. Specific heat capacity at constant volume for water, methanol, and their mixtures at temperatures from 300 K to 400 K and pressures to 20 MPa. J Chem Eng Data. 2001;46:1101–6.

    CAS  Article  Google Scholar 

  13. 13.

    Magee JW. Molar heat capacity (Cv) for saturated and compressed liquid and vapor nitrogen from 65 to 300 K at pressures to 35 MPa. J Res Natl Inst Stand Technol. 1991;96:725–40.

    CAS  Article  Google Scholar 

  14. 14.

    Magee JW, Luddecke TOD. Molar heat capacity at constant volume of n-Butane at temperatures from 141 to 342 K and at pressures to 33 MPa. Int. J. Thermophys. 1998;19(1):129–44.

    CAS  Article  Google Scholar 

  15. 15.

    Matarawy AAE, Ahmed MG. New adiabatic calorimeter for realization the triple point of water in metallic-sealed cell at NIS-Egypt. Int J Metrol. Qual. Eng. 2016;7:107.

    Article  Google Scholar 

  16. 16.

    Failleau G, Fleurence N, Morice R, Gaviot E, Renaot E. Adiabatic calorimetry approach to assess thermal influence on indium melting point. Int J Thermophys. 2010;31:1608–21.

    CAS  Article  Google Scholar 

  17. 17.

    Matarawy AE. Comparison of the realization of water triple point metallic cell through its preparation techniques in new modified adiabatic calorimeter at NIS-Egypt. J. Therm. Anal. Cal. 2019;136:2131–8.

    Article  Google Scholar 

  18. 18.

    Fujimura J, Nishiyama E, Tsukushi I, Shibata M. Enthalpy relaxation of low molecular weight amorphous styrene oligomers measured with an adiabatic calorimeter. J Therm Anal Cal. 2019;135:2813–7.

    CAS  Article  Google Scholar 

  19. 19.

    Stull DR. A semi-micro calorimeter for measuring heat capacities at low temperatures. J Am Chem Soc. 1937;59(12):2726–33.

    CAS  Article  Google Scholar 

  20. 20.

    Gorbunova NI, Grigoriev VA, Simonov VM, Shipova VA. Heat capacity of liquid benzene and hexafluorobenzene at atmospheric pressure. Int J Thermophys. 1982;3(1):1–15.

    CAS  Article  Google Scholar 

  21. 21.

    Huffman HM, Parks GS, Daniels AC. Thermal data on organic compounds. VII. the heat capacities, entropies and free energies of twelve aromatic hydrocarbons. J Am Chem Soc. 1930;52(4):1547–58.

    CAS  Article  Google Scholar 

  22. 22.

    Paramo R, Zouine M, Sobron F, Casanova C. Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K. Int J Thermophys. 2003;24(1):185–99.

    CAS  Article  Google Scholar 

  23. 23.

    Staveley LAK, Tupman WI, Hart KR. Some thermodynamic properties of the systems benzene + ethylene dichloride, benzene + carbon tetrachloride, acetone + chloroform, and acetone + carbon disulphide. Transactions of the Faraday Society. 1955;51:323–43.

    CAS  Article  Google Scholar 

  24. 24.

    Oliver GD, Eaton M, Huffman HM. The heat capacity, heat of fusion and entropy of benzene. J. Am. Chem. Soc. 1948;70(4):1502–5.

    CAS  Article  Google Scholar 

  25. 25.

    Domalski ES, Hearing ED. Heat capacities and entropies of organic compounds in the condensed phase, Volume III. J. Phys. Chem. Ref. Data. 25,1 (1996). https://doi.org/10.1063/1.555985.

  26. 26.

    Gao ZH, Shi Q, Tan ZC, Lan XZ. Low-temperature heat capacity and thermodynamic properties of 2-thiopheneacetic acid. Acta Chimica Sinica. 2010;68(3):227–32.

    CAS  Google Scholar 

  27. 27.

    Acree W, Chickos JS. Phase transition enthalpy measurements of organic and organometallic compounds. Sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1-C10. J Phys Chem Ref Data. 2016;45:033101(565).

    Article  Google Scholar 

  28. 28.

    Tunnicliff DD, Stone H. Calorimetric determination of purity: design and operation of a small adiabatic calorimeter. Anal Chem. 1955;27(1):73–80.

    CAS  Article  Google Scholar 

  29. 29.

    Wang HL, Fu SR. Determination of purity of organic compounds by differential scanning calorimetry (DSC) (in Chinese). Guangzhou Chem. 1989;1:30–3.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kai Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, K., Liu, Y., Wang, X. et al. The performance evaluation of a low-temperature adiabatic calorimeter with melting parameters and purity measurement of the benzene. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-020-10511-6

Download citation

Keywords

  • Melting point
  • Heat capacity
  • Molar melting enthalpy
  • Purity
  • Adiabatic calorimeter
  • Benzene