Thermal characterizations of basalt fiber-reinforced poly(aryl-ether-ketone) biomedical composites


This research article deals with the development and characterization of poly(aryl-ether-ketone) (PAEK) reinforced with 10 mass%, 20 mass% and 30 mass% of basalt fibers; the samples are titled as PABA 1, PABA 2 and PABA 3, respectively. The composite samples are prepared by hot compression molding process, and test specimens are prepared to ASTM standards. The prepared specimens are subjected to various thermal analyses. The results reveal that differential scanning calorimetry curve shows high crystallization temperature and melting enthalpy for 20 mass% basalt fiber in PAEK composite compared to other composites. The percentage of crystallinity is also higher, which indicates the purity of PABA 2. The same composite shows low mass loss with increase in degradation temperature in the thermogravimetric analysis, due to high heat resistance capacity and thermal barrier of PAEK/basalt fiber at this particular mass%. Dynamic mechanical analysis of 20 mass% basalt fiber PAEK composite shows better storage modulus and low loss modulus compared to 10 and 30 mass% basalt fiber/PAEK composites. The PABA 2 composite has minimum damping coefficient which indicates better stiffness and suitability for high-performance applications. The scanning electron microscope images show a good affinity between the matrix and the fiber in all the composites. Agglomeration of fibers in matrix is observed when loaded beyond 20 mass%; this may be due to lack of melt flow during hot compression.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Data Availability

No data are employed in this research work (of data and material). Code availability: No software is used in this research work.


  1. 1.

    Garcia-Gonzalez D, Rodriguez-Millan M, Rusinek A, Arias A. Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites. Compos Struct. 2015;133:1116–26.

    Article  Google Scholar 

  2. 2.

    Rae PJ, Brown EN, Orler EB. The mechanical properties of Poly(ether-ether-ketone) with emphasis on the large compressive strain response. Polymer. 2007;48:598–615.

    CAS  Article  Google Scholar 

  3. 3.

    Zheng B, Wang H, Huang Z, Zhang Y, Zhou H, Li D. Experimental investigation and constitutive modelling of the deformation behavior of poly-ether-ether-ketone at elevated temperatures. Polym Test. 2017;63:349–59.

    CAS  Article  Google Scholar 

  4. 4.

    Chen C, Zhang C, Liu C, Miao Y, Wong SC, Li Y. Rate dependent tensile failure behavior of short fiber reinforced PEEK. Compos Part B. 2018;136:187–96.

    CAS  Article  Google Scholar 

  5. 5.

    Nugroho P, Mitomo H, Yoshii F, Kume T, Nishimur K. Improvement of processability of PCL and PBS blend by irradiation and its biodegradability. Macromol Mater Eng. 2001;286:316–23.

    CAS  Article  Google Scholar 

  6. 6.

    Someya Y, Nakazato T, Teramoto N, Shibata M. Thermal and mechanical properties of poly (butylenes succinate) nano composites with various organo modified mont morillonites. J Appl Polym Sci. 2004;91:1463–75.

    CAS  Article  Google Scholar 

  7. 7.

    Ray SS, Bousmina M. Prog. kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. Mater Sci. 2005;50:962–1079.

    CAS  Google Scholar 

  8. 8.

    Lee MW, Han SO, Seo YB. Red algae fibre/poly (butylene succinate) biocomposites: the effect of fibre content on their mechanical and thermal properties. Compos Sci Tech. 2008;68:1266–72.

    CAS  Article  Google Scholar 

  9. 9.

    Liu L, Yu J, Cheng L, Qu W. Mechanical properties of poly (butylene succinate) (PBS) biocomposites reinforced with surface modified jute fibre. Compos A Appl Sci Manuf. 2009;40:669–74.

    Article  Google Scholar 

  10. 10.

    Kuan CF, Ma CM, Kuan HC, Wu HL, Liao YM. Preparation and characterization of the novel water-crosslinked cellulose reinforced poly (butylenes succinate) composites. Compos Sci Technol. 2006;66:2231–41.

    CAS  Article  Google Scholar 

  11. 11.

    Mahesh KV, Balanand S, Raimond R, Mohamed AP, Ananthakumar S. Polyaryletherketone polymer nanocomposite engineered with nanolaminated Ti3SiC2 ceramic fillers. Mater Des. 2014;63:360–7.

    CAS  Article  Google Scholar 

  12. 12.

    Scholz MS, Blanchfield JP, Bloom LD, Coburn BH, Elkington M, Fuller JD, Gilbert ME, Muflahi SA, Pernice MF, Rae SI, Trevarthen JA, White SC, Weaver PM, Bond IP. The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos Sci Technol. 2011;71(16):1791–803.

    CAS  Article  Google Scholar 

  13. 13.

    Lovald S, Kurtz S. Applications of polyetheretherketone in trauma, arthroscopy and cranial defect repair. In: Kurtz S, editor. PEEK biomaterials handbook. William Andrew Elsevier: Dordrecht; 2012. p. 243–60.

    Google Scholar 

  14. 14.

    Lee TW, Lee S, Park SM, Lee D. Mechanical, thermomechanical, and local anisotropy analyses of long basalt fiber reinforced polyamide 6 composites. Compos Struct. 2019;222:110917.

    Article  Google Scholar 

  15. 15.

    Han L, Ma F, Chen S, Pu Y. Effect of short basalt fibers on durability, mechanical properties, and thermal properties of polylactic acid composites. Polym Renew Resour. 2019;10(1–3):45–59.

    Google Scholar 

  16. 16.

    Wang X, Zhao X, Chen S, Wu Z. Static and fatigue behavior of basalt fiber-reinforced thermoplastic epoxy composites. J Compos Mater. 2020;54(18):2389–98.

    CAS  Article  Google Scholar 

  17. 17.

    Subramanian RV, Austin HE. Silane coupling agents in basalt-reinforced polyester composites. Int J Adhes Adhes. 1980;1:50–3.

    CAS  Article  Google Scholar 

  18. 18.

    Czigany T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol. 2006;66:3210–20.

    CAS  Article  Google Scholar 

  19. 19.

    Zharov AA. Reactions of solid monomers and polymers under shear deformation and high pressure-high–pressure chemistry and physics of polymers. In: Kovarskii AL, editor. CRC Press, London, 1994. pp. 267–301.

  20. 20.

    Conrad TL, Jaekel DJ, Kurtz SM, Roeder RK. Effects of the mold temperature on the mechanical properties and crystallinity of hydroxyapatite whisker-reinforced polyetheretherketone scaffolds. J Biomed Mater Res B Appl Biomater. 2013;101B:576–82.

    CAS  Article  Google Scholar 

  21. 21.

    Blundell DJ, Osborn BN. Morphology of poly (aryl-ether-ether-ketone). Polymer. 1983;24(8):953–8.

    CAS  Article  Google Scholar 

  22. 22.

    Kumar AA, Prakash M. Thermal properties of basalt/Cissus quadrangularis hybrid fiber reinforced polylactic acid biomedical composites. J Therm Anal Calorim. 2019;21:1–9.

    Google Scholar 

  23. 23.

    Ashok Kumar I, Jeya Kumar AA, Prakash M. Thermal characterization of flax/basalt fiber reinforced phenol resin brake pad material: effective replacement of asbestos. J Nat Fibers. 2019;14:1–1.

    Article  Google Scholar 

  24. 24.

    Parina P, Richard HT, Richard WM, Dianne F, John G, Mike P. Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polym Degrad Stab. 2010;95:709–18.

    Article  Google Scholar 

  25. 25.

    Li EZ, Guo WL, Wang HD, Xu BS, Liu XT. Research on tribological behavior of PEEK and glass fiber reinforced PEEK composites. Phys Proc. 2013;50:453–60.

    CAS  Article  Google Scholar 

  26. 26.

    Karsli NG, Aytac A. Tensile and thermomechancial properties of short carbon fiber reinforced polyamide 6 composites. Compos Part B eng. 2013;51:270–5.

    CAS  Article  Google Scholar 

  27. 27.

    Sandler J, Werner P, Sheffer MSP, Demchuk V, Altsta dt V, Windle AH. Carbon nanofiber reinforced poly(ether-ether-ketone) composites. Compos Part A. 2002;33:1033–9.

    Article  Google Scholar 

  28. 28.

    Rezaei F, Yunus R, Ibrahim NA. Effect of fiber length on thermo mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des. 2009;30:260–3.

    CAS  Article  Google Scholar 

  29. 29.

    Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K. Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Compos Part B eng. 2007;38:228–35.

    Article  Google Scholar 

  30. 30.

    Abdullah SA, Iqbal A, Frormann L. Melt mixing of carbon fibers and carbon nanotubes Incorporated polyurethanes. J Appl Polym Sci. 2008;110:196–202.

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the help rendered by Dynamic molding, Guindy Industrial Estate, Guindy, Chennai, Tamil Nadu, India, for providing facilities to conduct the experiments and also thank the Central Institute of Plastic Engineering Technology Guindy, Chennai, Tamil Nadu, India, for providing the testing facilities.


No funding is received from external agencies for this research work.

Author information



Corresponding author

Correspondence to A. Arul Jeya Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors in publishing our research work in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alice, A.Q., Kumar, A.A.J., Prakash, M. et al. Thermal characterizations of basalt fiber-reinforced poly(aryl-ether-ketone) biomedical composites. J Therm Anal Calorim (2021).

Download citation


  • Poly(aryl-ether-ketone)
  • Basalt fiber
  • High-performance polymer
  • Thermal analysis
  • Scanning electron microscope