Analysis of entropy production and activation energy in hydromagnetic rotating flow of nanoliquid with velocity slip and convective conditions


This article investigates entropy production in three-dimensional hydromagnetic rotating flow of nanoliquid with binary chemical mechanism and activation energy impacts. Brownian dispersion and thermophoresis effects are taken into account. Bejan number and entropy production are analyzed through the existence of porous medium, viscous dissipation, magnetic field, thermal radiation and heat source/sink. Velocity slip, convective heat and mass conditions are imposed at the boundary. The nonlinear equations are developed through transformation scheme. Shooting method is utilized to generate the solutions of resulting nonlinear expressions. Salient behaviors of several pertinent variables on velocities, nanoconcentration, entropy production, Bejan number and temperature distributions are examined graphically. Further surface drag forces, heat and mass transfer rates are graphically analyzed via different flow variables. It is observed that heat transfer rate significantly enhances for the higher values of thermal Biot number while an opposite behavior is noted against higher thermophoresis parameter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44


  1. 1.

    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div. 1995;66:99–105.

    Google Scholar 

  2. 2.

    Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  3. 3.

    Chamkha AJ, Aly AM, Mansour MA. Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects. Chem Eng Commun. 2010;197:846–58.

    CAS  Article  Google Scholar 

  4. 4.

    Turkyilmazoglu M. Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem Eng Sci. 2012;84:182–7.

    CAS  Article  Google Scholar 

  5. 5.

    Rashidi MM, Freidoonimehr N, Hosseini A, Bég OA, Hung TK. Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica. 2014;49:469–82.

    Article  Google Scholar 

  6. 6.

    Hayat T, Aziz A, Muhammad T, Ahmed B. Influence of magnetic field in three dimensional flow of couple stress nanofluid over a nonlinearly stretching surface with convective condition. PLoS ONE. 2015;10:e0145332.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Raju CSK, Sandeep N, Babu MJ, Sugunamma V. Dual solutions for three-dimensional MHD flow of a nanofluid over a nonlinearly permeable stretching sheet. Alex Eng J. 2016;55:151–62.

    Article  Google Scholar 

  8. 8.

    Hayat T, Aziz A, Muhammad T, Alsaedi A. On magnetohydrodynamic three dimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int J Heat Mass Transf. 2016;100:566–72.

    CAS  Article  Google Scholar 

  9. 9.

    Nayak MK, Akbar NS, Pandey VS, Khan ZH, Tripathi D. 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol. 2017;315:205–15.

    CAS  Article  Google Scholar 

  10. 10.

    Hayat T, Aziz A, Muhammad T, Alsaedi A. On model for flow of Burgers nanofluid with Cattaneo–Christov double diffusion. Chin J Phys. 2017;55:916–29.

    CAS  Article  Google Scholar 

  11. 11.

    Mahanthesh B, Gireesha BJ, Gorla RSR, Makinde OD. Magnetohydrodynamic three-dimensional flow of nanofluids with slip and thermal radiation over a nonlinear stretching sheet: a numerical study. Neural Comput Appl. 2018;30:1557–67.

    Article  Google Scholar 

  12. 12.

    Hayat T, Aziz A, Muhammad T, Alsaedi A. An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface. Results Phys. 2018;9:598–608.

    Article  Google Scholar 

  13. 13.

    Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  14. 14.

    Ali A, Shehzadi K, Sulaiman M, Asghar S. Heat and mass transfer analysis of 3D Maxwell nanofluid over an exponentially stretching surface. Phys Scr. 2019;94:065206.

    CAS  Article  Google Scholar 

  15. 15.

    Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy–Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim. 2019;136:2087–95.

    CAS  Article  Google Scholar 

  16. 16.

    Gireesha BJ, Gorla RSR, Mahanthesh B. Effect of suspended nanoparticles on three-dimensional MHD flow, heat and mass transfer of radiating Eyring–Powell fluid over a stretching sheet. Nanofluids J. 2015;4:1–11.

    Article  Google Scholar 

  17. 17.

    Kumar PBS, Gireesha BJ, Mahanthesh B, Chamkha AJ. Thermal analysis of nanofluid flow containing gyrotactic microorganisms in bioconvection and second-order slip with convective condition. J Therm Anal Calorim. 2019;136:1947–57.

    Article  CAS  Google Scholar 

  18. 18.

    Mahanthesh B, Shashikumar NS, Gireesha BJ, Animasaun IL. Effectiveness of Hall current and exponential heat source on unsteady heat transport of dusty TiO2-EO nanoliquid with nonlinear radiative heat. J Comput Des Eng. 2019;6:551–61.

    Google Scholar 

  19. 19.

    Mahanthesh B, Amala SA, Gireesha BJ, Animasaun IL. Effectiveness of exponential heat source, nanoparticle shape factor and Hall current on mixed convective flow of nanoliquids subject to rotating frame. Multidiscip Model Mater Struct. 2019;15:758–78.

    CAS  Article  Google Scholar 

  20. 20.

    Mahanthesh B, Lorenzini G, Oudina FM, Animasaun IL. Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. J Therm Anal Calorim. 2020;141:37–44.

    CAS  Article  Google Scholar 

  21. 21.

    Gorji MR, Pourmehran O, Hatami M, Ganji DD. Statistical optimization of microchannel heat sink (MCHS) geometry cooled by different nanofuids using RSM analysis. Eur Phys J Plus. 2015;130:1–21.

    Article  CAS  Google Scholar 

  22. 22.

    Pourmehran O, Gorji MR, Hatami M, Sahebi SAR, Domairry G. Numerical optimization of microchannel heat sink (MCHS) performance cooled by KKL based nanofluids in saturated porous medium. J Taiwan Inst Chem Eng. 2015.

    Article  Google Scholar 

  23. 23.

    Gorji MR, Pourmehran O, Bandpy MG, Ganji DD. Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field. J Taiwan Inst Chem Eng. 2016.

    Article  Google Scholar 

  24. 24.

    Sheikholeslami M, Shah Z, Shafee A, Kumam P, Babazadeh H. Lorentz force impact on hybrid nanofluid within a porous tank including entropy generation. Int Commun Heat Mass Transf. 2020;116:104635.

    CAS  Article  Google Scholar 

  25. 25.

    Khan SU, Waqas H, Muhammad T, Imran M, Ullah MZ. Significance of activation energy and Wu’s slip features in cross nanofluid with motile microorganisms. Commun Theor Phys. 2020;72:105001.

    Article  Google Scholar 

  26. 26.

    Kayalvizhi M, Kalaivanan R, Ganesh NV, Ganga B, Hakeem AKA. Velocity slip effects on heat and mass fluxes of MHD viscous-Ohmic dissipative flow over a stretching sheet with thermal radiation. Ain Shams Eng J. 2016;7:791–7.

    Article  Google Scholar 

  27. 27.

    Seth GS, Kumar R, Bhattacharyya A. Entropy generation of dissipative flow of carbon nanotubes in rotating frame with Darcy–Forchheimer porous medium: a numerical study. J Mol Liq. 2018;268:637–46.

    CAS  Article  Google Scholar 

  28. 28.

    Amanulla Ch, Wakif A, Boulahia Z, Reddy MS, Nagendra N. Numerical investigations on magnetic field modeling for Carreau non-Newtonian fluid flow past an isothermal sphere. J Braz Soc Mech Sci Eng. 2018;40:462.

    Article  Google Scholar 

  29. 29.

    Wakif A, Boulahia Z, Ali F, Eid MR, Sehaqui R. Numerical analysis of the unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu-water nanofluids. Int J Appl Comput Math. 2018;4:81.

    Article  Google Scholar 

  30. 30.

    Animasaun IL, Ibraheem RO, Mahanthesh B, Babatunde HA. A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin J Phys. 2019;60:676–87.

    CAS  Article  Google Scholar 

  31. 31.

    Wakif A, Qasim M, Afridi MI, Saleem S, Al-Qarni MM. Numerical examination of the entropic energy harvesting in a magnetohydrodynamic dissipative flow of Stokes’ second problem: utilization of the gear-generalized differential quadrature method. J Non Equilib Thermodyn. 2019;44:385–403.

    CAS  Article  Google Scholar 

  32. 32.

    Qasim M, Ali Z, Wakif A, Boulahia Z. Numerical simulation of MHD peristaltic flow with variable electrical conductivity and Joule dissipation using generalized differential quadrature method. Commun Theor Phys. 2019;71:509.

    CAS  Article  Google Scholar 

  33. 33.

    Qasim M, Afridi MI, Wakif A, Thoi TN, Hussanan A. Second law analysis of unsteady MHD viscous flow over a horizontal stretching sheet heated non-uniformly in the presence of ohmic heating: utilization of gear-generalized differential quadrature method. Entropy. 2019;21:240.

    CAS  PubMed Central  Article  Google Scholar 

  34. 34.

    Qasim M, Afridi MI, Wakif A, Saleem S. Influence of variable transport properties on nonlinear radioactive Jeffrey fluid flow over a disk: utilization of generalized differential quadrature method. Arab J Sci Eng. 2019;44:5987–96.

    CAS  Article  Google Scholar 

  35. 35.

    Wakif A, Animasaun IL, Narayana PVS, Sarojamma G. Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin J Phys. 2020;68:293–307.

    CAS  Article  Google Scholar 

  36. 36.

    Ahmed B, Hayat T, Alsaedi A, Abbasi FM. Entropy generation in peristalsis with iron oxide. J Therm Anal Calorim. 2020;140:789–97.

    CAS  Article  Google Scholar 

  37. 37.

    Bejan A. A study of entropy generation in fundamental convective heat transfer. J Heat Transf. 1979;101:718–25.

    Article  Google Scholar 

  38. 38.

    Bejan A. Second law analysis in heat transfer. Energy. 1980;5:720–32.

    Article  Google Scholar 

  39. 39.

    Noghrehabadi A, Saffarian MR, Pourrajab R, Ghalambaz M. Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. J Mech Sci Technol. 2013;27:927–37.

    Article  Google Scholar 

  40. 40.

    Rehman S, Haq RU, Khan ZH, Lee C. Entropy generation analysis for non-Newtonian nanofluid with zero normal flux of nanoparticles at the stretching surface. J Taiwan Inst Chem Eng. 2016;63:226–35.

    CAS  Article  Google Scholar 

  41. 41.

    Bhatti MM, Abbas T, Rashidi MM. Entropy generation as a practical tool of optimisation for non-Newtonian nanofluid flow through a permeable stretching surface using SLM. J Comput Des Eng. 2017;4:21–8.

    Google Scholar 

  42. 42.

    Sithole H, Mondal H, Sibanda P. Entropy generation in a second grade magnetohydrodynamic nanofluid flow over a convectively heated stretching sheet with nonlinear thermal radiation and viscous dissipation. Results Phys. 2018;9:1077–85.

    Article  Google Scholar 

  43. 43.

    Alharbi S, Dawar A, Shah Z, Khan W, Idrees M, Islam S, Khan I. Entropy generation in MHD Eyring–Powell fluid flow over an unsteady oscillatory porous stretching surface under the impact of thermal radiation and heat source/sink. Appl Sci. 2018;8:2588.

    CAS  Article  Google Scholar 

  44. 44.

    Seyyedi SM, Dogonchi AS, Tilehnoee MH, Asghar Z, Waqas M, Ganji DD. A computational framework for natural convective hydromagnetic flow via inclined cavity: an analysis subjected to entropy generation. J Mol Liq. 2019;287:110863.

    CAS  Article  Google Scholar 

  45. 45.

    Rashid M, Khan MI, Hayat T, Khan MI, Alsaedi A. Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition. J Mol Liq. 2019;276:441–52.

    CAS  Article  Google Scholar 

  46. 46.

    Hayat T, Riaz R, Aziz A, Alsaedi A. Analysis of entropy generation for MHD flow of third grade nanofluid over a nonlinear stretching surface embedded in a porous medium. Phys Scr. 2019;94:125703.

    CAS  Article  Google Scholar 

  47. 47.

    Bestman AR. Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res. 1990;14:389–96.

    CAS  Article  Google Scholar 

  48. 48.

    Makinde OD, Olanrewaju PO. Unsteady mixed convection with Soret and Dufour effects past a porous plate moving through a binary mixture of chemically reacting fluid. Chem Eng Commun. 2011;198:920–38.

    CAS  Article  Google Scholar 

  49. 49.

    Maleque KA. Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J Thermodyn. 2013;2013:692516.

    Article  CAS  Google Scholar 

  50. 50.

    Lu D, Ramzan M, Ahmad S, Chung JD, Farooq U. Upshot of binary chemical reaction and activation energy on carbon nanotubes with Cattaneo–Christov heat flux and buoyancy effects. Phys Fluids. 2017;29:123103.

    Article  CAS  Google Scholar 

  51. 51.

    Zaib A, Rashidi MM, Chamkha AJ, Bhattacharyya K. Numerical solution of second law analysis for MHD Casson nanofluid past a wedge with activation energy and binary chemical reaction. Int J Numer Methods Heat Fluid Flow. 2017;27:2816–34.

    Google Scholar 

  52. 52.

    Anuradha S, Sasikala K. MHD free convective flow of a nanofluid over a permeable shrinking sheet with binary chemical reaction and activation energy. Int J Eng Sci Invent. 2018;7:22–30.

    Google Scholar 

  53. 53.

    Ramesh GK, Shehzad SA, Hayat T, Alsaedi A. Activation energy and chemical reaction in Maxwell magneto-nanoliquid with passive control of nanoparticle volume fraction. J Braz Soc Mech Sci Eng. 2018;40:422.

    Article  Google Scholar 

  54. 54.

    Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2019;136:1769–79.

    CAS  Article  Google Scholar 

  55. 55.

    Reddy SRR, Reddy PBA, Bhattacharyya K. Effect of nonlinear thermal radiation on 3D magneto slip flow of Eyring–Powell nanofluid flow over a slendering sheet with binary chemical reaction and Arrhenius activation energy. Adv Power Technol. 2019;30:3203–13.

    CAS  Article  Google Scholar 

  56. 56.

    Ahmad S, Farooq M, Mir NA, Anjum A, Javed M. Magnetohydrodynamic flow of squeezed fluid with binary chemical reaction and activation energy. J Cent South Univ. 2019;26:1362–73.

    CAS  Article  Google Scholar 

  57. 57.

    Wang CY. Stretching a surface in a rotating fluid. Z Angew Math Phys. 1988;39:177–85.

    Article  Google Scholar 

  58. 58.

    Javed T, Abbas Z, Sajid M, Ali N. Non-similar solution for rotating flow over an exponentially stretching surface. Int J Numer Methods Heat Fluid Flow. 2011;21:903–8.

    CAS  Article  Google Scholar 

  59. 59.

    Mushtaq A, Mustafa M, Hayat T, Alsaedi A. Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Adv Powder Technol. 2016;27:2223–31.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Arsalan Aziz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Aziz, A. & Alsaedi, A. Analysis of entropy production and activation energy in hydromagnetic rotating flow of nanoliquid with velocity slip and convective conditions. J Therm Anal Calorim (2021).

Download citation


  • Nanoparticles
  • Rotating frame
  • Magnetic field
  • Entropy production
  • Arrhenius activation energy
  • Numerical solution