Energy, exergy and economic investigation of passive and active inclined solar still: experimental study

Abstract

The energy efficiency (EnE) and exergy efficiency (ExE) investigations of passive and active inclined solar still (PISS and AISS) are presented in this work. The PISS produced maximum EnE and ExE of 40.21 and 2.88% and the AISS produced maximum EnE and ExE of 48.38 and 6.71%, respectively. The distilled water production, EnE, ExE of the AISS is 47, 16.89, and 57.08% higher than that of the PISS. The daily power generation from the photovoltaic (PV) panel in the PISS is 69 W, and that in the AISS is 52 W. The daily electrical efficiency of the PV panel in the PISS is 9.17%, while that in the AISS is 7.20%. Moreover, the daily average overall EnE, daily average overall ExE, and economic analysis of the PISS and the AISS are calculated. The daily overall EnE and ExE of the system are higher in the case of AISS in comparison to the PISS. The overall daily EnE and ExE of the AISS are 5.24 and 29.63% higher as compared to the PISS. Also, the cost of yield production is noted to be cheaper in AISS (0.018 $/L) when compared to the PISS (0.029 $/L).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

A s :

Area of still (m2)

A c :

Area of STC (m2)

Exinput:

Exergy input of an ISPB still (W m2)

Exoutput:

Exergy output of an ISPB still (W m2)

h :

Heat transfer coefficient (W m2 K)

I :

Current (A)

I c (t):

Solar intensity received on STC (W m2)

I s (t):

Solar intensity received on solar still (W m2)

EnE:

Energy efficiency

ExE:

Exergy efficiency

ElE:

Electrical efficiency

ISS:

Inclined solar still

PISS:

Passive inclined solar still

AISS:

Active inclined solar still

L fg :

Latent heat of vaporization (kJ kg1 K)

m ew :

Hourly productivity from the still (kg m2 h)

P :

Power production

PV:

Photovoltaic

PV/T:

Photovoltaic thermal

STC:

Spiral tube collector

PCM:

Phase change material

FPC:

Flat plate collector

T :

Temperature (°C)

V :

Voltage (V)

η overall , exe :

Overall exergy efficiency (%)

η pv :

PV panel efficiency (%)

Al2O3 :

Aluminium oxide

SnO2 :

Tin oxide

ZnO:

Zinc oxide

Np:

Nanoparticles

NF:

Nanofluid

CuO:

Copper oxide

CSS:

Conventional solar still

SSS:

Stepped solar still

DSSS:

Double slope solar still

e :

Exergy

e a.out :

Exergy output of AISS

U :

Overall loss coefficient (W m−2 K−1)

FF:

Fill factor

V oc :

Open circuit voltage

I sc :

Short circuit current

CRF:

Capital recovery factor

AFC:

Annual first cost

AM:

Annual maintenance

SFF:

Sinking fund factor

ASC:

Annual salvage cost

AC:

Annual cost

a:

Ambient

d:

Daily

e:

Evaporation

g:

Glass

s:

Sun

w:

Water

i:

Inner

p:

Passive

out:

Output

in:

Input

th:

Thermal

References

  1. 1.

    Muthu Manokar A, Prince Winston D, Kabeel AE, Sathyamurthy R, Arunkumar T. Different parameter and technique affecting the rate of evaporation on active solar still—a review. Heat Mass Transf. 2018;54:593–630.

    Article  Google Scholar 

  2. 2.

    Manokar AM, Winston DP, Sathyamurthy R, Kabeel AE, Prasath AR. Experimental investigation on pyramid solar still in passive and active mode. Heat Mass Transf. 2019;55:1045–58.

    Article  Google Scholar 

  3. 3.

    Singh AK, Singh DB, Dwivedi VK, Tiwari GN, Gupta A. Water purification using solar still with/without nano-fluid: a review. Mater Today Proc. 2020;21:1700–6.

    CAS  Article  Google Scholar 

  4. 4.

    Singh AK, Singh DB, Kumar N, Dwivedi VK, Singh G, Kumar R. Basin-type solar distiller associated with PVT collectors—a comprehensive review. In: Advances in energy and built environment. Singapore: Springer; 2020. pp. 253–260.

  5. 5.

    Singh DB, Singh AK, Navneet K, Dwivedi VK, Yadav JK, Singh G. Performance analysis of special design single basin passive solar distillation systems: a comprehensive review. In: Advances in engineering design. Singapore: Springer; 2019. pp. 301–310.

  6. 6.

    Moh’d AAN, Al-Ammari WA. A novel hybrid PV-distillation system. Sol Energy. 2016;135:874–83.

    Article  Google Scholar 

  7. 7.

    Kabeel AE, Muthu Manokar A, Sathyamurthy R, Prince Winston D, El-Agouz SA, Chamkha AJ. A review on different design modifications employed in inclined solar still for enhancing the productivity. J Sol Energy Eng. 2019;141(3):031007.

    CAS  Article  Google Scholar 

  8. 8.

    Pansal K, Ramani B, Kumar Sadasivuni K, Panchal H, Manokar M, Sathyamurthy R, Israr M. Use of solar photovoltaic with active solar still to improve distillate output: a review. Groundw Sustain Dev. 2020;10:100341.

    Article  Google Scholar 

  9. 9.

    Manokar AM, Winston DP, Kabeel AE, Sathyamurthy R. Sustainable fresh water and power production by integrating PV panel in inclined solar still. J Clean Prod. 2018;172:2711–9.

    Article  Google Scholar 

  10. 10.

    Sasikumar C, Manokar AM, Vimala M, Winston DP, Kabeel AE, Sathyamurthy R, Chamkha AJ. Experimental studies on passive inclined solar panel absorber solar still. J Therm Anal Calorim. 2020;139(6):3649–60.

    CAS  Article  Google Scholar 

  11. 11.

    Kabeel AE, Sathyamurthy R, Mageshbabu D, Madhu B, Anand P, Balakrishnan P. Effect of mass flow rate on fresh water improvement from inclined PV panel basin solar still. Mater Today Proc. 2020. https://doi.org/10.1016/j.matpr.2020.02.051.

    Article  Google Scholar 

  12. 12.

    Kabeel AE, Taamneh Y, Sathyamurthy R, Naveen Kumar P, Manokar AM, Arunkumar T. Experimental study on conventional solar still integrated with inclined solar still under different water depth. Heat Transf Asian Res. 2019;48(1):100–14.

    Article  Google Scholar 

  13. 13.

    Naroei M, Sarhaddi F, Sobhnamayan F. Efficiency of a photovoltaic thermal stepped solar still: experimental and numerical analysis. Desalination. 2018;441:87–95.

    CAS  Article  Google Scholar 

  14. 14.

    Elbar ARA, Yousef MS, Hassan H. Energy, exergy, exergoeconomic and enviroeconomic (4E) evaluation of a new integration of solar still with photovoltaic panel. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.06.111.

    Article  Google Scholar 

  15. 15.

    Taamneh Y, Manokar AM, Thalib MM, Kabeel AE, Sathyamurthy R, Chamkha AJ. Extraction of drinking water from modified inclined solar still incorporated with spiral tube solar water heater. J Water Process Eng. 2020;38:101613.

    Article  Google Scholar 

  16. 16.

    Winston DP, Pounraj P, Manokar AM, Sathyamurthy R, Kabeel AE. Experimental investigation on hybrid PV/T active solar still with effective heating and cover cooling method. Desalination. 2018;435:140–51.

    Article  Google Scholar 

  17. 17.

    Manokar AM, Vimala M, Sathyamurthy R, Kabeel AE, Winston DP, Chamkha AJ. Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector. Environ Dev Sustain. 2020;22(5):4145–67.

    Article  Google Scholar 

  18. 18.

    Moravej M, Bozorg MV, Guan Y, Li LK, Doranehgard MH, Hong K, Xiong Q. Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2–water nanofluids. Sustain Energy Technol Assess. 2020;40:100783.

    Google Scholar 

  19. 19.

    Maghsoudi P, Sadeghi S, Xiong Q, Aminossadati SM. A multi-factor methodology for evaluation and optimization of plate-fin recuperators for micro gas turbine applications considering payback period as universal objective function. Int J Numer Methods Heat Fluid Flow. 2020;30:2411–38.

    Article  Google Scholar 

  20. 20.

    Riahi A, Wan Yusof K, Mahinder Singh BS, Isa MH, Olisa E, Zahari NAM. Sustainable potable water production using a solar still with photovoltaic modules-AC heater. Desalin Water Treatm. 2016;57(32):14929–44.

    Article  Google Scholar 

  21. 21.

    Saeedi F, Sarhaddi F, Behzadmehr A. Optimization of a PV/T (photovoltaic/thermal) active solar still. Energy. 2015;87:142–52.

    Article  Google Scholar 

  22. 22.

    Samuel DH, Nagarajan PK, Sathyamurthy R, El-Agouz SA, Kannan E. Improving the yield of fresh water in conventional solar still using low cost energy storage material. Energy Convers Manag. 2016;112:125–34.

    Article  Google Scholar 

  23. 23.

    Moravej M, Saffarian MR, Li LK, Doranehgard MH, Xiong Q. Experimental investigation of circular flat-panel collector performance with spiral pipes. J Therm Anal Calorim. 2020;140:1229–36.

    CAS  Article  Google Scholar 

  24. 24.

    Samylingam L, Aslfattahi N, Saidur R, Yahya SM, Afzal A, Arifutzzaman A, Kadirgama K. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid. Sol Energy Mater Sol Cells. 2020;218:110754.

    CAS  Article  Google Scholar 

  25. 25.

    Afzal A, Samee ADM, Javad A, Shafvan SA, Ajinas PV, Kabeer KMA. Heat transfer analysis of plain and dimpled tubes with different spacings. Heat Transf Asian Res. 2018;47(3):556–68.

    Article  Google Scholar 

  26. 26.

    Sathyamurthy R, El-Agouz SA, Nagarajan PK, Subramani J, Arunkumar T, Mageshbabu D, Prakash N. A review of integrating solar collectors to solar still. Renew Sustain Energy Rev. 2017;77:1069–97.

    Article  Google Scholar 

  27. 27.

    Sellami MH, Touahir R, Guemari S, Loudiyi K. Use of Portland cement as heat storage medium in solar desalination. Desalination. 2016;398:180–8.

    CAS  Article  Google Scholar 

  28. 28.

    Singh DB, Yadav JK, Dwivedi VK, Kumar S, Tiwari GN, Al-Helal IM. Experimental studies of active solar still integrated with two hybrid PVT collectors. Sol Energy. 2016;130:207–23.

    Article  Google Scholar 

  29. 29.

    Afzal A, Samee AM, Razak RA, Ramis MK. Heat transfer characteristics of MWCNT nanofluid in rectangular mini channels. Int J Heat Technol. 2018;36(1):222–8.

    Article  Google Scholar 

  30. 30.

    Tiwari GN, Yadav JK, Singh DB, Al-Helal IM, Abdel-Ghany AM. Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system. Desalination. 2015;367:186–96.

    CAS  Article  Google Scholar 

  31. 31.

    Yari M, Mazareh AE, Mehr AS. A novel cogeneration system for sustainable water and power production by integration of a solar still and PV module. Desalination. 2016;398:1–11.

    CAS  Article  Google Scholar 

  32. 32.

    Manokar AM, Winston DP, Mondol JD, Sathyamurthy R, Kabeel AE, Panchal H. Comparative study of an inclined solar panel basin solar still in passive and active mode. Sol Energy. 2018;169:206–16.

    Article  Google Scholar 

  33. 33.

    Tiwari GN, Lawrence SA. New heat and mass transfer relations for a solar still. Energy Convers Manag. 1991;31(2):201–3.

    CAS  Article  Google Scholar 

  34. 34.

    Tiwari GN, Dimri V, Chel A. Parametric study of an active and passive solar distillation system: energy and exergy analysis. Desalination. 2009;242(1–3):1–18.

    CAS  Article  Google Scholar 

  35. 35.

    Kabeel AE, Hamed AM, El-Agouz SA. Cost analysis of different solar still configurations. Energy. 2010;35(7):2901–8.

    Article  Google Scholar 

  36. 36.

    Kumar S. Thermal–economic analysis of a hybrid photovoltaic thermal (PVT) active solar distillation system: role of carbon credit. Urban Clim. 2013;5:112–24.

    Article  Google Scholar 

  37. 37.

    Kumar S, Tiwari GN. Estimation of internal heat transfer coefficients of a hybrid (PV/T) active solar still. Sol Energy. 2009;83(9):1656–67.

    CAS  Article  Google Scholar 

  38. 38.

    Eltawil MA, Omara ZM. Enhancing the solar still performance using solar photovoltaic, flat plate collector and hot air. Desalination. 2014;349:1–9.

    CAS  Article  Google Scholar 

  39. 39.

    Moh’d AAN, Kiwan SM, Talafha S. Hybrid solar-wind water distillation system. Desalination. 2016;395:33–40.

    Article  Google Scholar 

  40. 40.

    Al-Nimr MDA, Al-Ammari WA, Alkhalidi A. A novel hybrid photovoltaics/thermoelectric cooler distillation system. Int J Energy Res. 2019;43(2):791–805.

    CAS  Article  Google Scholar 

  41. 41.

    Al-Nimr MDA, Qananba KS. A solar hybrid thermoelectric generator and distillation system. Int J Green Energy. 2018;15(8):473–88.

    Article  Google Scholar 

  42. 42.

    Moh’d AAN, Qananba KS. A solar hybrid system for power generation and water distillation. Sol Energy. 2018;171:92–105.

    Article  Google Scholar 

  43. 43.

    Abdallah S, Abu-Khader MM, Badran O. Performance evaluation of solar distillation using vacuum tube coupled with photovoltaic system. Appl Sol Energy. 2009;45(3):176.

    Article  Google Scholar 

  44. 44.

    Kabeel AE, Abdelgaied M. Performance enhancement of a photovoltaic panel with reflectors and cooling coupled to a solar still with air injection. J Clean Prod. 2019;224:40–9.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Muthu Manokar or Mohsen Sharifpur.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thalib, M., Vimala, M., Manokar, A.M. et al. Energy, exergy and economic investigation of passive and active inclined solar still: experimental study. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-020-10501-8

Download citation

Keywords

  • Brackish water
  • Water treatment
  • Energy
  • Exergy
  • Active mode
  • Distilled water
  • Inclined solar still