Superior flame retardancy of glass fiber-reinforced polyamide 6T composites by synergism between DOPO-based derivative and carbon nanotube

Abstract

How to create high-performance flame-retardant semi-aromatic polyamide with minimum flame retardant loading remain a major challenge. Herein, glass fiber-reinforced polyamide 6T (GFPA6T) composites with superior flame retardancy were obtained by synergism between DOPO-based derivative (PN-DOPO) and carbon nanotube (CNT). The introduction of 9 mass% PN-DOPO and 1 mass% CNT into GFPA6T, which is significantly lower than the loading reported (15 mass%), leads to superior flame retardancy with V-0 rating during UL-94 test and a higher limiting oxygen index (LOI) value of 28.5%. Thermogravimetry, cone calorimeter and char residue analysis suggest that the addition of CNT can enhance the thermal stability and promote the formation of stable char layers, effectively protecting the matrix from fire. By quantitative analysis, the flame retardancy mechanism of the resulting GFPA6T composites includes three aspects: 14.3% flame inhibition, 8.5% charring effect and 34.7% protective-barrier effect. Besides, the introduction of CNTs can compensate the loss of mechanical properties due to the incorporation of flame-retardant PN-DOPO.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Seefeldt H, Duemichen E, Brauna U. Flame retardancy of glass fiber reinforced high temperature polyamide by use of aluminum diethylphosphinate: thermal and thermo-oxidative effects. Polym Int. 2013;62:1608–16.

    CAS  Google Scholar 

  2. 2.

    Shabanian M, Mirzakhanian Z, Basaki N, Khonakdar HA, Faghihi K, Hoshyargar F, Wagenknecht U. Flammability and thermal properties of novel semi aromaticpolyamide/organoclay nanocomposite. Thermochim Acta. 2014;585:63–70.

    CAS  Article  Google Scholar 

  3. 3.

    Horrocks AR, Smart G, Hörold S, Wanzke W, Schlosser E, Williams J. The combined effects of zinc stannate and aluminium diethyl phosphinate on the burning behaviour of glass fibre-reinforced, high temperature polyamide (HTPA). Polym Degrad Stabil. 2014;104:95–103.

    CAS  Article  Google Scholar 

  4. 4.

    Lin XB, Chen L, Long JW, Du SL, Wang YZ. A hybrid flame retardant for semi-aromatic polyamide: unique structure towards self-compatibilization and flame retardation. Chem Eng J. 2018;334:1046–54.

    CAS  Article  Google Scholar 

  5. 5.

    Lin XB, Du SL, Long JW, Chen L, Wang YZ. A novel organophosphorus hybrid with excellent thermal stability: core-shell, hybridization mechanism, and application in flame retarding semi-aromatic polyamide. Acs Appl Mater Inter. 2016;8(1):881–90.

    CAS  Article  Google Scholar 

  6. 6.

    Lin XB, Du SL, Tan Y, Chen L, Wang YZ. Semi-aromatic polyamide flame-retarded by modified red phosphorus and BM@Al-PPi hybrid temperature resistance. Acta Polymerica Sinica. 2016;11:1522–8.

    Google Scholar 

  7. 7.

    Huang W, He W, Long LJ, Yan W, He M, Qin S, Yu J. Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative: Flame retardancy, thermal decomposition, and pyrolysis behavior. Polym Degrad Stabil. 2018;148:26–41.

    CAS  Article  Google Scholar 

  8. 8.

    Huang W, He W, Long L, Yan W, He M, Qin S, Yu J. Thermal degradation kinetics of flame-retardant glass-fiber-reinforced polyamide 6T composites based on bridged DOPO derivatives. Polym Bull. 2019;76:2061–80.

    CAS  Article  Google Scholar 

  9. 9.

    He W, Song P, Yu B, Fang Z, Wang H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog Mater Sci. 2020;114:100687–735.

    CAS  Article  Google Scholar 

  10. 10.

    Zhou T, Wu T, Xiang H, Li Z, Xu Z, Kong Q, Zhang J, Li Z, Pan Y, Wang D. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. J Therm Anal Calorim. 2019;135:2117–24.

    CAS  Article  Google Scholar 

  11. 11.

    Zhang J, Kong Q, Wang D-Y. Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6:6376–86.

    CAS  Article  Google Scholar 

  12. 12.

    He W, Zhu H, Xiang Y, Long L, Qin S, Yu J. Enhancement of flame retardancy and mechanical properties of polyamide 6 by incorporating an aluminum salt of diisobutylphosphinic combined with organoclay. Polym Degrad Stabil. 2017;144:442–53.

    CAS  Article  Google Scholar 

  13. 13.

    Ding J, Zhang Y, Zhang X, Kong Q, Zhang J, Liu H, Zhang F. Improving the flame-retardant efficiency of layered double hydroxide with disodium phenylphosphate for epoxy resin. J Therm Anal Calorim. 2020;140:149–56.

    CAS  Article  Google Scholar 

  14. 14.

    Kong Q, Sun Y, Zhang C, Guan H, Zhang J, Wang D-Y, Zhang F. Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Compos Sci Technol. 2019;182:107748–57.

    CAS  Article  Google Scholar 

  15. 15.

    Kong Q, Wu T, Zhang J, Wang D-Y. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol. 2018;154:136–44.

    CAS  Article  Google Scholar 

  16. 16.

    Hu Y, Xu P, Gui H, Wang X, Ding Y. Effect of imidazolium phosphate and multiwalled carbon nanotubes on thermal stability and flame retardancy of polylactide. Compos Part A Appl Sci. 2015;77:147–53.

    CAS  Article  Google Scholar 

  17. 17.

    Xing W, Yang W, Yang W, Hu Q, Si J, Lu H, Yang B, Song L, Hu Y, Yuen RK. Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. Acs Appl Mater Inter. 2016;8(39):26266–74.

    CAS  Article  Google Scholar 

  18. 18.

    Durkin DP, Gallagher MJ, Frank BP, Knowlton ED, Trulove PC, Fairbrother DH, Fox DM. Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly(methyl methacrylate). J Therm Anal Calorim. 2017;130:735–53.

    CAS  Article  Google Scholar 

  19. 19.

    Bhattacharya M. Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials (Basel). 2016;9(4):262–96.

    Article  Google Scholar 

  20. 20.

    Shabanian M, Hajibeygi M, Roohani M. Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties. New Carbon Mater. 2015;30:397–403.

    CAS  Article  Google Scholar 

  21. 21.

    Mahmood N, Islam M, Hameed A, Saeed S. Polyamide 6/multiwalled carbon nanotubes nanocomposites with modified morphology and thermal properties. Polymers. 2013;5(4):1380–91.

    Article  Google Scholar 

  22. 22.

    Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH Jr, Shields JR. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater. 2005;4:928–33.

    CAS  Article  Google Scholar 

  23. 23.

    Kashiwagi T, Mu M, Winey KI, Cipriano B, Raghavan SR, Pack S, Miriam R, Yang Y, Grulke E, Shields J, Harris R, Douglas J. Relation between the viscoelastic and flammability properties of polymer nanocompositesq. Polymer. 2008;49:4358–68.

    CAS  Article  Google Scholar 

  24. 24.

    Buczko A, Stelzig T, Bommer L, Rentsch D, Heneczkowski M, Gaan S. Bridged DOPO derivatives as flame retardants for PA6. Polym Degrad Stabil. 2014;107:158–65.

    CAS  Article  Google Scholar 

  25. 25.

    Butnaru I, Fernández-Ronco MP, Czech-Polak J, Heneczkowski M, Bruma M, Gaan S. Effect of meltable triazine-DOPO additive on rheological, mechanical, and flammability properties of PA6. Polymers. 2015;7:1541–63.

    CAS  Article  Google Scholar 

  26. 26.

    Wang P, Yang F, Cai Z. Synergistic effect of organo-montmorillonite and DOPO-based oligomer on improving the flame retardancy of epoxy thermoset. J Therm Anal Calorim. 2017;128:1429–41.

    CAS  Article  Google Scholar 

  27. 27.

    Yu T, Jiang N, Li Y. Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos Sci Technol. 2014;104:26–33.

    CAS  Article  Google Scholar 

  28. 28.

    Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M. Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym Degrad Stabil. 2011;96(5):875–84.

    CAS  Article  Google Scholar 

  29. 29.

    Wang J, Qian L, Huang Z, Fang Y, Qiu Y. Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym Degrad Stabil. 2016;130:173–81.

    CAS  Article  Google Scholar 

  30. 30.

    Yu H, Liu J, Wen X, Jiang Z, Wang Y, Wang L, Zheng J, Fu S, Tang T. Charing polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin. Polymer. 2011;52(21):4891–8.

    CAS  Article  Google Scholar 

  31. 31.

    Qian X, Song L, Jiang S, Tang G. Novel flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and unsaturated bonds: synthesis, characterization, and application in the flame retardancy of epoxy acrylates. Ind Eng Chem Res. 2013;52(22):7307–15.

    CAS  Article  Google Scholar 

  32. 32.

    Schartel B, Pötschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polym J. 2005;41(5):1061–70.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The work was supported by Doctoral Scientific Fund Project in Huanggang Normal University (2042019029).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wentao He or Shuhao Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Huang, W., He, W. et al. Superior flame retardancy of glass fiber-reinforced polyamide 6T composites by synergism between DOPO-based derivative and carbon nanotube. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-020-10500-9

Download citation

Keywords

  • Flame retardancy
  • Polyamide 6T
  • DOPO-based derivative
  • Carbon nanotube