Influence of ionic liquids on mechanical and thermal properties of polyethylene from renewable resources

Abstract

Polyethylene from renewable resources produced using sugarcane as raw material was modified with phosphonium ionic liquids. Tensile properties and thermal behavior of modified biopolyethylene in air and nitrogen atmosphere were studied. The thermal degradation of ionic liquids and their influence on thermal degradation of polyethylene from renewable resources were studied by thermogravimetric analysis (TGA). In general, modification of biopolyethylene with phosphonium ionic liquids resulted in improvement of tensile properties, i.e., tensile strength and Young’s modulus. Thermal degradation of biopolyethylene modified with phosphonium ILs proceeds in one step in the range of 400–500 °C in nitrogen atmosphere. Modification of polyethylene with trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid resulted in increase in DTGpeaks and T10% temperatures toward higher temperature for modified polyethylene in comparison with unfilled PE sample both in air and nitrogen atmosphere.

This is a preview of subscription content, access via your institution.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ghandi KA. Review of Ionic Liquids, Their Limits and Applications. Green Sustain Chem. 2014;4:44–53.

    CAS  Article  Google Scholar 

  2. 2.

    Vekariya RL. A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq. 2017;227:44–60.

    CAS  Article  Google Scholar 

  3. 3.

    Javed F, Ullah F, Zakaria MR, Akil HM. An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): a review. J Mol Liq. 2018;271:403–20.

    CAS  Article  Google Scholar 

  4. 4.

    De Boeck M, Dehaen W, Tytgat J, Cuypers E. Microextractions in forensic toxicology: the potential role of ionic liquids. Trends Anal Chem. 2019;111:73–84.

    Article  Google Scholar 

  5. 5.

    El-Maghlany WM, Minea AA. Novel empirical correlation for ionanofluid PEC inside tube subjected to heat flux with application to solar energy. J Therm Anal Calorim. 2019;135:1161–70.

    CAS  Article  Google Scholar 

  6. 6.

    Wang W, Wu Z, Li B, Sundén B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J Therm Anal Calorim. 2019;136:1037–51.

    CAS  Article  Google Scholar 

  7. 7.

    Patra N, Martinová L, Stuchlik M, Černík M. Structure-property relationships in Sterculia urens/polyvinyl alcoholelectrospun composite nanofibers. Carbohyd Polym. 2015;120:69–73.

    CAS  Article  Google Scholar 

  8. 8.

    Patra N, Vojtová L, Martinová L. Deacetylation-induced changes in thermal properties of Sterculia urens gum. J Therm Anal Calorim. 2015;122:235–40.

    CAS  Article  Google Scholar 

  9. 9.

    Andrade CKZ, Matos RAF, Oliveira VB, Durães JA. Sales MJA (2010) Thermal study and evaluation of new menthol-based ionic liquids as polymeric additives. J Therm Anal Calorim. 2010;99:539–43.

    CAS  Article  Google Scholar 

  10. 10.

    Mezzetta A, Perillo V, Guazzelli L, Chiappe C. Thermal behavior analysis as a valuable tool for comparing ionic liquids of different classes. J Therm Anal Calorim. 2019;138:3335–45.

    CAS  Article  Google Scholar 

  11. 11.

    Monteiro M, Maria L, Cruz A, Carretas JM, Marçalo J, Leal JP. Thermal stability and specific heats of coordinating ionic liquids. Thermochim Acta. 2020;684:178482.

    CAS  Article  Google Scholar 

  12. 12.

    Quraishi KS, Bustam MA, Krishnan S, Khan MI, Wilfred CD, Lévêque J-M. Thermokinetics of alkyl methylpyrrolidinium [NTf2] ionic liquids. Effect of alkyl chain on thermal stability. J Therm Anal Calorim. 2017;129:261–70.

    CAS  Article  Google Scholar 

  13. 13.

    Cao Y, Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res. 2014;53:8651–64.

    CAS  Article  Google Scholar 

  14. 14.

    Xu Y, Xu H, Zheng Q, Song Y. Influence of ionic liquid on glass transition, dynamic rheology, and thermal stability of poly(methyl methacrylate)/silica nanocomposites. J Appl Polym Sci. 2019. https://doi.org/10.1002/APP.48007.

    Article  Google Scholar 

  15. 15.

    Yan Z, Meng D, Huang Y, Hou Z, Wu X, Wang Y, Du X, Xie H. Modification of kaolinite with alkylimidazolium salts. Nanocomposites with tunable d-spacing and thermal stability. J Therm Anal Calorim. 2014;118:133–40.

    CAS  Article  Google Scholar 

  16. 16.

    Maciejewska M, Sowińska A. Thermal characterization of the effect of fillers and ionic liquids on the vulcanization and properties of acrylonitrile–butadiene elastomer. J Therm Anal Calorim. 2019;138:4359–73.

    CAS  Article  Google Scholar 

  17. 17.

    Sowińska A, Maciejewska M. Thermal analysis applied to studying the influence of ionic liquidson the vulcanization, thermal stability and damping properties of ethylene-propylene-diene rubber. J Therm Anal Calorim. 2019;138:2669–81.

    Article  Google Scholar 

  18. 18.

    Jiang HC, Lin WC, Hua M, Pan XH, Shu CM, Jiang JC. Analysis of kinetics of thermal decomposition of melamine blended with phosphorous ionic liquid by green approach. J Therm Anal Calorim. 2018;13:2821–31.

    Article  Google Scholar 

  19. 19.

    Chen X, Feng X, Jiao C. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J Therm Anal Calorim. 2017;129:851–7.

    CAS  Article  Google Scholar 

  20. 20.

    Jiao C, Wang H, Chen X. Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane. J Therm Anal Calorim. 2018;133:1471–80.

    CAS  Article  Google Scholar 

  21. 21.

    Jiao C, Wang H, Chen X, Tang G. Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@[EOOEMIm][BF4]. J Therm Anal Calorim. 2019;135:3141–52.

    CAS  Article  Google Scholar 

  22. 22.

    Jiao C, Jiang H, Chen X. Properties of fire agent integrated with molecular sieve and tetrafluoroborate ionic liquid in thermoplastic polyurethane elastomer. Polym Adv Technol. 2019;30:2159–67.

    CAS  Article  Google Scholar 

  23. 23.

    Jiang HC, Lin WC, Hua M, Pan XH, Shu CM, Jiang JC. Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared spectrometry. J Therm Anal Calorim. 2019;138:489–99.

    CAS  Article  Google Scholar 

  24. 24.

    Sonnier R, Dumazert L, Livi S, Nguyen TKL, Duchet-Rumeau J, Vahabi H, Laheurte P. Flame retardancy of phosphorus-containing ionic liquid based epoxy Networks. Polym Deg Stab. 2016;134:186–93.

    CAS  Article  Google Scholar 

  25. 25.

    Gui H, Xu P, Hu Y, Wang J, Yang X, Bahader A, Ding Y. Synergistic effect of graphene and ionic liquid containing phosphonium on the thermal stability and flame retardancy of polylactide. RSC Advances. 2015;5:27814–22.

    CAS  Article  Google Scholar 

  26. 26.

    Rudnik E. Compostable polymer materials. 2nd ed. Oxford: Elsevier; 2019.

    Google Scholar 

  27. 27.

    Garrison TF, Murawski A, Quirino RL. Bio-based polymers with potential for biodegradability. Polymers. 2016;8:262. https://doi.org/10.3390/polym8070262.

    CAS  Article  PubMed Central  Google Scholar 

  28. 28.

    Belboom S, Léonard A. Does biobased polymer achieve better environmental impacts than fossil polymer? Comparison of fossil HDPE and biobased HDPE produced from sugar beet and wheat. Biomass Bioenerg. 2016;85:159–67.

    CAS  Article  Google Scholar 

  29. 29.

    Luzi F, Luigi T, Kenny JM, Puglia D. Bio- and fossil-based polymeric blends and nanocomposites for packaging: structure–property relationship. Materials. 2019;12:471. https://doi.org/10.3390/ma12030471.

    CAS  Article  PubMed Central  Google Scholar 

  30. 30.

    Wang DK, He H, Yu P. Flame-retardant and thermal degradation mechanism of low-density polyethylene modified with aluminum hypophosphite and microencapsulated red phosphorus. J Appl Polym Sci. 2016. https://doi.org/10.1002/APP.43225.

    Article  Google Scholar 

  31. 31.

    Dias JC, Correia DC, Lopes AC, Ribeiro S, Ribeiro C, Sencadas V, Botelho G, Esperanc JMSS, Laza JM, Vilas JL, León LM, Lanceros-Méndez S. Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. Mater Sci. 2016;51:4442–50.

    CAS  Article  Google Scholar 

  32. 32.

    Hernández BA, Bartolomé M, Blanco D, Viesca JL, Fernández-González A, González R. Phosphonium cation-based ionic liquids as neat lubricants: physicochemical and tribological performance. Tribol Int. 2016;95:118–31.

    Article  Google Scholar 

  33. 33.

    Keating MY, Gao F, Ramsey JB. TGA-MS study of the decomposition of phosphorus-containing ionic liquids trihexyl(tetradecyl)phosphonium decanoate and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl] amide. J Therm Anal Calorim. 2011;106:207–11.

    CAS  Article  Google Scholar 

  34. 34.

    Blanco D, Bartolomé M, Ramajo B, Viesca JL, González R, Hernández BA. Isoconversional kinetic analysis applied to five phosphonium cation-based ionic liquids. Thermochim Acta. 2017;648:62–74.

    CAS  Article  Google Scholar 

  35. 35.

    Ba M, Liang B, Wang C. Synthesis and characterization of a novel charring agent and its application in intumescent flame retardant polyethylene system. Fibers Polym. 2017;18:907–14.

    CAS  Article  Google Scholar 

  36. 36.

    Dias AMA, Marceneiro S, Braga MEM, Coelho JFJ, Ferreira AGM, Simões PN, Veiga HIM, Tomé LC, Marrucho IM, Esperança JMSS, Matias AA, Duarte CMM, Rebelo LPN, de Sousa HC. Phosphonium-based ionic liquids as modifiers for biomedical grade poly(vinyl chloride). Acta Biomater. 2012;8:1366–79.

    CAS  Article  Google Scholar 

  37. 37.

    Tomar PA, Yadav SM, Gupta GR. The thermal gravimetric studies for polymer samples of polyvinyl chloride (PVC) and polyvinyl alcohol (PVA) obtained by treatment with ionic liquid [bmim]Br. Polym Bull. 2014;71:1349–58.

    CAS  Article  Google Scholar 

  38. 38.

    Lorenzetti A, Choi SY, Martina RM, Modesti M, McNally T. Effect of dual functional ionic liquids on the thermal degradation of poly(vinyl chloride). Polym Degrad Stabil. 2016;129:12–8.

    CAS  Article  Google Scholar 

  39. 39.

    Gupta GR, Nevare MR, Patil AM, Gite VV. Unprecedented exploration of ionic liquids as additives which astonishes the thermal stability of PVC formulations. Bull Mater Sci. 2019;42:203.

    Article  Google Scholar 

  40. 40.

    Ferrero B, Fombuena V, Fenollar O, Boronat TR, Balart R. Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polym Compos. 2015;36:1378–85.

    CAS  Article  Google Scholar 

  41. 41.

    Schartel B. Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials. 2010;3:4710–45.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ewa Rudnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rudnik, E., Węgrzyn, M., Kukfisz, B. et al. Influence of ionic liquids on mechanical and thermal properties of polyethylene from renewable resources. J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-020-10489-1

Download citation

Keywords

  • Biopolyethylene
  • Renewable resources
  • Ionic liquids
  • Tensile properties
  • Degradation
  • Thermal stability
  • Thermogravimetry