Energy and exergy analyses of vacuum cooling as experimental assessment: case study for boiled cauliflower (Brassica Oleracea Var)

Abstract

This study was designed to investigate both energy and exergy analyses, exergy efficiency and coefficient of performance (COP) of the vacuum cooling system as a case study for boiled cauliflower (Brassica Oleracea Var). In literature, there is only one study investigated exergy analysis of vacuum cooling, and it is on pre cooling of the harvested mushroom. This paper is aimed to investigate the energy and exergy analyses of vacuum cooling for the cooked foods. First time in literature, the variation of the exergy product and total exergy due to pressure drop, relative humidity and average temperature in the vacuum chamber is determined and discussed in this study. In the paper, the effect of important parameters on the exergetic efficiency and COP for the vacuum cooling system is presented and discussed. An experimental study carried out in the paper to cool the boiled cauliflower in the vacuum cooling system and the center, surface, and ambient temperatures, pressure and humidity values are measured and presented. Experimental results were used energy and exergy analyses of the vacuum cooling system. In addition to energy and exergy analyses, mass conservation, first law of thermodynamics and second law of thermodynamics are also presented for vacuum cooling process. In this study, the parameters affecting energy and exergy analyses, performance coefficient (COP) and exergy efficiency for vacuum cooling systems is to determine. Results show that COP of vacuum cooling archives to 26 and exergy efficiency increases to 91% for the when pressure close to absolute zero pressure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

C :

Specific heat capacity (kJ kg1 K1)

COP:

Coefficient of performance (−)

Ex :

Amount of exergy (kJ)

Ex :

Specific exergy (kJ kg1)

H :

Specific enthalpy (kJ kg1)

H :

Total enthalpy (kJ)

m :

Mass (kg)

\(\dot{m}\) :

Mass flow rate (kg s1)

p :

Partial pressure (kPa)

\(\dot{Q}\) :

Heat transfer rate (kJ s1 or kW)

R :

Universal gas constant (kJ kg1 K1)

s :

Specific entropy (kJ kg1 K1)

\(\dot{S}\) :

Entropy rate (kJ s1 K1 or kW K1))

T :

Temperature (oC or K)

V :

Volume (m3)

\(\dot{W}\) :

Power or work rate (kJ s1 or kW)

a:

Air

c:

Center, cooling

cv:

Control volume

d:

Dew-point, dry solid

evap:

Evaporation

fg:

Latent heat of vaporization

gen:

Generation

m:

Material

p:

Constant pressure

s:

Surface, saturation

t:

Total

vp:

Vacuum pump

w:

Water

0:

Dead

\(\omega\) :

Absolute humidity

\(\tilde{\omega }\) :

Humidity ratio

\(\emptyset\) :

Relative humidity

\(\eta\) :

Exergetic efficiency (−)

References

  1. 1.

    Amit SK, Uddin MM, Rahman R, Islam SR, Khan MS. A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur. 2017. https://doi.org/10.1186/s40066-017-0130-8.

    Article  Google Scholar 

  2. 2.

    Steele R. Understanding and measuring the shelf-life of food. New York: Woodhead Publishing Limited; 2004.

    Google Scholar 

  3. 3.

    Kader AA, Zagory D, Kerbel EL, Wang CY. Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci Nutr. 1989. https://doi.org/10.1007/978-1-4615-2117-4_7.

    Article  PubMed  Google Scholar 

  4. 4.

    White GW, Cakebread SH. The glassy state in certain sugar-containing food products. Int J Food Sci Technol. 1966. https://doi.org/10.1111/j.1365-2621.1966.tb01031.x.

    Article  Google Scholar 

  5. 5.

    Roos Y, Karel M. Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci. 1991. https://doi.org/10.1111/j.1365-2621.1991.tb07970.x.

    Article  Google Scholar 

  6. 6.

    Levine H, Slade LA. Polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs). Carbohyd Polym. 1981. https://doi.org/10.1016/0144-8617(86)90021-4.

    Article  Google Scholar 

  7. 7.

    Jongen W. Improving the safety of fresh fruit and vegetables. Boca Raton FL: CRC Press; 2005.

    Google Scholar 

  8. 8.

    Sofos JN. Improving the safety of fresh meat. Boca Raton FL USA: CRC Press; 2005.

    Google Scholar 

  9. 9.

    Sun DW, Zheng L. Vacuum cooling technology for the agri-food industry: past, present and future. J Food Eng. 2006. https://doi.org/10.1016/j.jfoodeng.2005.06.023.

    Article  Google Scholar 

  10. 10.

    Wang L, Sun DW. Rapid cooling of porous and moisture foods by using vacuum cooling technology. Trends Food Sci Technol. 2001. https://doi.org/10.1016/S0924-2244(01)00077-2.

    Article  Google Scholar 

  11. 11.

    Wang L, Sun DW. Effect of operating conditions of a vacuum cooler on cooling performance for large cooked meat joints. J Food Eng. 2004. https://doi.org/10.1016/S0260-8774(03)00095-5.

    Article  Google Scholar 

  12. 12.

    Zheng L, Sun D. Vacuum cooling for the food industry—a review of recent research advances. Trends Food Sci Technol. 2004. https://doi.org/10.1016/j.tifs.2004.09.002.

    Article  Google Scholar 

  13. 13.

    Bartz JA, Brecht JK. Postharvest physiology and pathology of vegetables. New York: Marcel Dekker Inc.; 2002.

    Google Scholar 

  14. 14.

    McDonald K, Sun DW. Vacuum cooling technology for the food processing industry: a review. J Food Eng. 2000. https://doi.org/10.1016/S0260-8774(00)00041-8.

    Article  Google Scholar 

  15. 15.

    Houska M, Sun DW, Landfeld A, Zhang Z. Experimental study of vacuum cooling of cooked beef in soup. J Food Eng. 2003. https://doi.org/10.1016/S0260-8774(02)00435-1.

    Article  Google Scholar 

  16. 16.

    McDonald K, Sun DW. The formation of pores and their effects in a cooked beef product on the efficiency of vacuum cooling. J Food Eng. 2001. https://doi.org/10.1016/S0260-8774(00)00111-4.

    Article  Google Scholar 

  17. 17.

    McDonald K, Sun DW. Pore size distribution and structure of a cooked beef product as affected by vacuum cooling. J Food Process Eng. 2001. https://doi.org/10.1111/j.1745-4530.2001.tb00550.x.

    Article  Google Scholar 

  18. 18.

    McDonald K, Sun DW, Kenny T. Comparison of the quality of cooked beef products cooled by vacuum cooling and by conventional cooling. LWT-Food Sci Technol. 2000. https://doi.org/10.1006/fstl.1999.0603.

    Article  Google Scholar 

  19. 19.

    McDonald K, Sun DW, Kenny T. The effect of injection level on the quality of a rapid vacuum cooled cooked beef product. J Food Eng. 2001. https://doi.org/10.1016/S0260-8774(00)00110-2.

    Article  Google Scholar 

  20. 20.

    McDonald K, Sun DW, Lyng JG. Effect of vacuum cooling on the thermophysical properties of a cooked beef product. J Food Eng. 2002. https://doi.org/10.1016/S0260-8774(01)00100-5.

    Article  Google Scholar 

  21. 21.

    He SY, Feng GP, Yang HS, Wub Y, Li YF. Effects of pressure reduction rate on quality and ultrastructure of iceberg lettuce after vacuum cooling and storage. Postharvest Biol Technol. 2004. https://doi.org/10.1016/j.postharvbio.2004.03.006.

    Article  Google Scholar 

  22. 22.

    He SY, Li YF. Experimental study and process parameters analysis on the vacuum cooling of iceberg lettuce. Energy Convers Manage. 2008. https://doi.org/10.1016/j.enconman.2008.04.004.

    Article  Google Scholar 

  23. 23.

    Rennie TJ. Effect of vacuum rate on the vacuum cooling of lettuce. MSc Thesis, McGill University Department of Agricultural and Biosystems Engineering: Montreal; 1999.

  24. 24.

    Tambunan AH, Sagara Y, Seo Y. Image analysis for precise study on temperature distribution during vacuum cooling of lettuce. Technol Innov Sustain Agric. 2000;6:223–8.

    Google Scholar 

  25. 25.

    Martinez JA, Artés F. Effect of packaging treatments and vacuum-cooling on quality of winter harvested iceberg lettuce. Food Res Int. 1999. https://doi.org/10.1016/S0963-9969(99)00135-0.

    Article  Google Scholar 

  26. 26.

    Ozturk HM, Ozturk HK. Effect of pressure on the vacuum cooling of iceberg lettuce. Int J Refrig. 2009. https://doi.org/10.1016/j.ijrefrig.2008.09.009.

    Article  Google Scholar 

  27. 27.

    Alibaş İ, Okursoy R. Ispanağın havayla, vakumla ve suyla ön soğutulmasındaki kalite ve işletim parametrelerinin belirlenmesi. Tarım Makinaları Bilimi Dergisi. 2009;5(2):149–60.

    Google Scholar 

  28. 28.

    Garrido Y, Tudela JA, Gil MI. Comparison of industrial precooling systems for minimally processed baby spinach. Postharvest Biol Technol. 2015. https://doi.org/10.1016/j.postharvbio.2014.12.003.

    Article  Google Scholar 

  29. 29.

    Ozturk HM, Ozturk HK, Kocar G. Comparison of vacuum cooling with conventional cooling for purslane. Int J Food Eng. 2011. https://doi.org/10.2202/1556-3758.2442.

    Article  Google Scholar 

  30. 30.

    Cheng HP, Hsueh CF. Multi-stage vacuum cooling process of cabbage. J Food Eng. 2007. https://doi.org/10.1016/j.jfoodeng.2006.01.027.

    Article  Google Scholar 

  31. 31.

    Song XY, Liu BL, Jaganathan GK. Temperature distribution pattern of Brassica chinensis during vacuum cooling. J Food Process. 2016. https://doi.org/10.1155/2016/8247085.

    Article  Google Scholar 

  32. 32.

    Zhu Z, Wu X, Geng Y, Sun DW, Chen H, Zhao Y, Zhou W, Li X, Pan H. Effects of modified atmosphere vacuum cooling (MAVC) on the quality of three different leafy cabbages. Lebensmittel-Wissenschaft und -Technologie- Food Sci Technol. 2018. https://doi.org/10.1016/j.lwt.2018.04.002.

    Article  Google Scholar 

  33. 33.

    Zhang Z, Sun DW. Effect of cooling methods on the cooling efficiencies and qualities of cooked broccoli and carrot slices. J Food Eng. 2006. https://doi.org/10.1016/j.jfoodeng.2005.06.038.

    Article  Google Scholar 

  34. 34.

    Rennie TJ, Raghavan GSV, Vigneault C. Determination of the product refrigeration load in vacuum cooling of lettuce. Appl Eng Agric. 2000. https://doi.org/10.13031/2013.5295.

    Article  Google Scholar 

  35. 35.

    Sun H, Jin T, Xu L, Zhu H. Effective heat flux model for vacuum precooling. J Food Process Preserv. 2005. https://doi.org/10.1111/j.1745-4549.2005.00015.x.

    Article  Google Scholar 

  36. 36.

    Zhang Z, Sun DW. Effects of cooling methods on the cooling efficiency and quality of cooked rice. J Food Eng. 2006. https://doi.org/10.1016/j.jfoodeng.2005.06.029.

    Article  Google Scholar 

  37. 37.

    Ozturk HM, Ozturk HK, Koçar G. Microbial analysis of meatballs cooled with vacuum and conventional cooling. J Food Sci Technol. 2017. https://doi.org/10.1007/s13197-017-2720-7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Alibas I, Koksal N. Forced-air, vacuum, and hydro precooling of cauliflower (Brassica oleracea L. var. botrytis cv Freemont): part I. Determination of precooling parameters. Food Sci Technol. 2014. https://doi.org/10.1590/1678-457X.6456.

    Article  Google Scholar 

  39. 39.

    Alibas I, Koksal N. Forced-air, vacuum, and hydro precooling of cauliflower (Brassica oleracea L. var botrytis cv Freemont): Part II. Determination of quality parameters during storage. Food Sci Technol. 2015. https://doi.org/10.1590/1678-457X.6457.

    Article  Google Scholar 

  40. 40.

    Cheng Q, Sun DW. Feasibility assessment of vacuum cooling of cooked pork ham with water compared to that without water and with air blast cooling. Int J Food Sci Technol. 2006. https://doi.org/10.1111/j.1365-2621.2005.01148.x.

    Article  Google Scholar 

  41. 41.

    Cheng Q, Sun DW. Improving the quality of pork ham by pulsed vacuum cooling in water. J Food Process Eng. 2006. https://doi.org/10.1111/j.1745-4530.2006.00052.x.

    Article  Google Scholar 

  42. 42.

    Jackman P, Sun DW, Zheng L. Effect of combined vacuum cooling and air blast cooling on processing time and cooling loss of large cooked beef joints. J Food Eng. 2007. https://doi.org/10.1016/j.jfoodeng.2006.10.026.

    Article  Google Scholar 

  43. 43.

    Cheng Q, Sun W. Effects of combined water cooking–vacuum Cooling with water on processing time, mass loss and quality of large pork ham. J Food Process Eng. 2006. https://doi.org/10.1111/j.1745-4530.2007.00089.x.

    Article  Google Scholar 

  44. 44.

    Desmond EM, Kenny TA, Ward P, Sun DW. Effect of rapid and conventional cooling methods on the quality of cooked ham joints. Meat Sci. 2000. https://doi.org/10.1016/S0309-1740(00)00052-8.

    Article  PubMed  Google Scholar 

  45. 45.

    Desmond EM, Kenny TA, Ward P. The effect of injection level and cooling method on the quality of cooked ham joints. Meat Sci. 2002. https://doi.org/10.1016/s0309-1740(01)00133-4.

    Article  PubMed  Google Scholar 

  46. 46.

    Jin TX, Xu L. Development and validation of moisture movement model for vacuum cooling of cooked meat. J Food Eng. 2006. https://doi.org/10.1016/j.jfoodeng.2005.04.022.

    Article  Google Scholar 

  47. 47.

    Jin TX. Experimental investigation of the temperature variation in the vacuum chamber during vacuum cooling. J Food Eng. 2007. https://doi.org/10.1016/j.jfoodeng.2005.09.034.

    Article  Google Scholar 

  48. 48.

    Drummond LS, Sun D. Feasibility of water immersion cooking of beef joints: effect on product quality and yield. J Food Eng. 2006. https://doi.org/10.1016/j.jfoodeng.2005.06.032.

    Article  Google Scholar 

  49. 49.

    Jin TX, Zhu HM, Xu L. Moisture movement characteristics and their effect on the ultrastructure of cooked meat during vacuum cooling. Biosys Eng. 2006. https://doi.org/10.1016/j.biosystemseng.2006.06.004.

    Article  Google Scholar 

  50. 50.

    Houska M, Landfeld A, Sun DW. Eating quality enhancement of cooked pork and beef by ripening in brine and vacuum cooling. J Food Eng. 2005. https://doi.org/10.1016/j.jfoodeng.2004.06.0102.

    Article  Google Scholar 

  51. 51.

    Huber E, Laurindo JB. Determination of mass transfer coefficients during the vacuum cooling of pre-cooked meat cuts. Int J Food Prop. 2006. https://doi.org/10.1080/10942910600596142.

    Article  Google Scholar 

  52. 52.

    Pichaya BP, Danai B, Kasem P. Effect of vacuum cooling on shelf life of organic chayote shoot (Sechium edule Sm.). Agric Sci Technol. 2012;2:220–7.

    Google Scholar 

  53. 53.

    De J, Sreedharan A, Li Y, Gutierrez A, Sargent S, Schneider K. Comparison of forced-air cooling and hydrocooling on the microbial quality control of Florida blueberries. International association for food protection (Tampa, Florida). 2017.

  54. 54.

    Chahartaghi M, Mohammad K, Ahmadi MH, Ravinder K, Ravindra J. Energy and exergy analyses and thermo-economic optimization of geothermal heat pump for domestic water heating. Int J Low-Carbon Technol. 2019. https://doi.org/10.1093/ijlct/cty060.

    Article  Google Scholar 

  55. 55.

    Ahmadi MH, Mirhadi S, Sadaghi FP, Mahyar G, Omid M, Mehdi M, Somchai W. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic rankine cycle power plant with liquefied natural gas as heat sink. Entropy. 2018. https://doi.org/10.3390/e20070484.

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Mirzaei M, Ahmadi MH, Mohammad M, Mohammad AN, Reza A. Energy, exergy and economics analysis of an ORC working with several fluids and utilizes smelting furnace gases as heat source. Thermal Sci Eng Progress. 2018. https://doi.org/10.1016/j.tsep.2017.11.011.

    Article  Google Scholar 

  57. 57.

    Dincer I, Midilli A, Kucuk H. Progress in exergy, energy, and the environment. Berlin: Springer; 2014.

    Google Scholar 

  58. 58.

    Dincer I, Sahin AZ. A new model for thermodynamic analysis of a drying process. Int J Heat Mass Transf. 2004. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.013.

    Article  Google Scholar 

  59. 59.

    Noroozian A, Amin M, Mokhtar B, Ahmadi MH. Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants. Energy Convers Manage. 2017. https://doi.org/10.1016/j.enconman.2017.04.067.

    Article  Google Scholar 

  60. 60.

    Vandani A, Mohammadi K, Mokhtar B, Ahmadi MH. Energy, exergy and environmental analyses of a combined cycle power plant under part-load conditions. Mech Ind. 2016. https://doi.org/10.1051/meca/2016019.

    Article  Google Scholar 

  61. 61.

    Aghbashlo M, Mobli H, Rafiee S, Madadlou A. A review on exergy analysis of drying processes and systems. Renew Sustain Energy Rev. 2013. https://doi.org/10.1016/j.rser.2013.01.015.

    Article  Google Scholar 

  62. 62.

    Bayrak M, Midilli A, Nurveren K. Energy and exergy analyses of sugar production stages. Int J Energy Res. 2003. https://doi.org/10.1002/er.916.

    Article  Google Scholar 

  63. 63.

    Balkan F, Colak N, Hepbasli A. Performance evaluation of a triple-effect evaporator with forward feed using exergy analysis. Int J Energy Res. 2005. https://doi.org/10.1002/er.1074.

    Article  Google Scholar 

  64. 64.

    Dincer I. On energetic, exergetic and environmental aspects of drying systems. Int J Energy Res. 2002. https://doi.org/10.1002/er.792.

    Article  Google Scholar 

  65. 65.

    Colak N, Hepbasli A. Exergy analysis of drying of apple in a heat pump dryer. In: Second international conference of the food industries and nutrition division on future trends in food science and nutrition. 2005:27–29.

  66. 66.

    Erbay Z, Icier F. Optimization of drying of olive leaves in a pilot-scale heat pump dryer. Dry Technol. 2009. https://doi.org/10.1080/07373930802683021.

    Article  Google Scholar 

  67. 67.

    Hancioglu E, Hepbasli A, Icier F, Erbay Z, Colak N. Performance investigation of the drying of parsley in a tray dryer system. Int J Exergy. 2010. https://doi.org/10.1504/IJEX.2010.03124.

    Article  Google Scholar 

  68. 68.

    Erbay Z, Koca N. Energetic, exergetic, and exergoeconomic analyses of spray-drying process during white cheese powder production. Dry Technol. 2012. https://doi.org/10.1080/07373937.2011.647183.

    Article  Google Scholar 

  69. 69.

    Fudholi A, Sopian K, Othman MY, Ruslan MH. Energy and exergy analyses of solar drying system of red seaweed. Energy Build. 2014. https://doi.org/10.1016/j.enbuild.2013.07.072.

    Article  Google Scholar 

  70. 70.

    Rodriguez-Illera M, Nikiforidis CV, Van der Goot AJ, Boom RM. Exergy efficiency from staple food ingredients to body metabolism: the case of carbohydrates. J Clean Prod. 2017. https://doi.org/10.1016/j.jclepro.2016.10.009.

    Article  Google Scholar 

  71. 71.

    Erbay Z, Hepbasli A. Exergoeconomic evaluation of a ground-source heat pump food dryer at varying dead state temperatures. J Clean Prod. 2017. https://doi.org/10.1016/j.jclepro.2016.11.164.

    Article  Google Scholar 

  72. 72.

    Zisopoulos FK, Rossier-Miranda FJ, Van der Goot AJ, Boom RM. The use of exergetic indicators in the food industry—a review. Crit Rev Food Sci Nutr. 2017. https://doi.org/10.1080/10408398.2014.975335.

    Article  PubMed  Google Scholar 

  73. 73.

    Ahmadi MH, Ahmadi MA, Sadatsakkak SA. Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs). Renew Sustain Energy Rev. 2015. https://doi.org/10.1016/j.rser.2015.07.006.

    Article  Google Scholar 

  74. 74.

    Chengqin R, Nianping L, Guangfa T. Principles of exergy analysis in HVAC and evaluation of evaporative cooling schemes. Build Environ. 2002. https://doi.org/10.1016/S0360-1323(01)00104-4.

    Article  Google Scholar 

  75. 75.

    Kaushik SC, Arora A. Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems. Int J Refrig. 2009. https://doi.org/10.1016/j.ijrefrig.2009.01.017.

    Article  Google Scholar 

  76. 76.

    Al-Sulaiman FA, Dincer I, Hamdullahpur F. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production. J Power Sourc. 2010. https://doi.org/10.1016/j.jpowsour.2009.10.075.

    Article  Google Scholar 

  77. 77.

    Ahamed JU, Saidur R, Masjuki HH. A review on exergy analysis of vapor compression refrigeration system. Renew Sustain Energy Rev. 2011. https://doi.org/10.1016/j.rser.2010.11.039.

    Article  Google Scholar 

  78. 78.

    Caliskan H, Dae-Young L, Hiki H. Assessments of high-efficient regenerative evaporative cooler effects on desiccant air-cooling systems. J Energy Res Technol. 2020. https://doi.org/10.1115/1.4046523.

    Article  Google Scholar 

  79. 79.

    Javadi MA, Ahmadi MH, Khalaji M. Exergetic, economic, and environmental analyses of combined cooling and power plants with parabolic solar collector. Environ Progress Sustain Energy. 2020. https://doi.org/10.1002/ep.13322.

    Article  Google Scholar 

  80. 80.

    Liu Y, Zhao Y, Feng X. Exergy analysis for a freeze-drying process. Appl Therm Eng. 2008. https://doi.org/10.1016/j.applthermaleng.2007.06.004.

    Article  Google Scholar 

  81. 81.

    Wang L. Energy efficiency and management in food processing facilities. Boca Raton: CRC Press; 2008.

    Google Scholar 

  82. 82.

    Pelletier N, Audsley E, Brodt S, Garnett T, Henriksson P, Kendall A, Troell M. Energy intensity of agriculture and food systems. Annu Rev Environ Resour. 2011. https://doi.org/10.1146/annurev-environ-081710-161014.

    Article  Google Scholar 

  83. 83.

    Tassou SA, Ge Y, Hadawey A, Marriott D. Energy consumption and conservation in food retailing. Appl Therm Eng. 2011. https://doi.org/10.1016/j.applthermaleng.2010.08.023.

    Article  Google Scholar 

  84. 84.

    Wang GB, Zhang XR. Experimental performance comparison and trade-off among air-based precooling methods for postharvest apples by comprehensive multiscale thermodynamic analyses. Int J Energy Res. 2020. https://doi.org/10.1002/er.4919.

    Article  Google Scholar 

  85. 85.

    Vakilabadi MA, Bidi M, Najafi AF, Ahmadi MH. Energy, Exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant zero liquid discharge systems. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08463-7.

    Article  Google Scholar 

  86. 86.

    Zhu Z, Geng Y, Sun DW. Effects of operation processes and conditions on enhancing performances of vacuum cooling of foods: a review. Trends Food Sci Technol. 2019. https://doi.org/10.1016/j.tifs.2018.12.011.

    Article  Google Scholar 

  87. 87.

    Thompson JF, Rumsey TR. Determining product temperature in a vacuum cooler. Microfiche Collection; 1984.

  88. 88.

    Isik E. Comparison of the thermodynamically analysis of vacuum cooling method with the experimental model. Am J Food Technol. 2007. https://doi.org/10.3923/ajft.2007.217.227.

    Article  Google Scholar 

  89. 89.

    Ozturk HM, Hepbasli A. Experimental performance assessment of a vacuum cooling system through exergy analysis method. J Clean Prod. 2017. https://doi.org/10.1016/j.jclepro.2017.05.118.

    Article  Google Scholar 

  90. 90.

    Choi Y. Effects of temperature and composition on the thermal properties of foods. Food Eng Process Appl. 1986;1:93–101.

    Google Scholar 

  91. 91.

    ASHRAE. Handbook refrigeration, American society of heating, refrigerating and air-conditioning engineers thermal properties of foods; 2006.

  92. 92.

    McPherson MJ. Psychrometry: the study of moisture in air Subsurface ventilation and environmental engineering. Dordrecht: Springer; 1993.

    Google Scholar 

  93. 93.

    Hartman HL, Mutmansky JM, Ramani RV, Wang YJ. Mine ventilation and air conditioning. New York: Wiley; 2012.

    Google Scholar 

  94. 94.

    Vehkamäki H. Classical nucleation theory in multicomponent systems. Berlin: Springer; 2006.

    Google Scholar 

  95. 95.

    Caliskan H, Hiki H, Jin KJ. Thermodynamic assessments of the novel cascade air cooling system including solar heating and desiccant cooling units. Energy Convers Manage. 2019. https://doi.org/10.1016/j.enconman.2019.112013.

    Article  Google Scholar 

  96. 96.

    Syahrul S, Hamdullahpur F, Dincer I. Exergy analysis of fluidized bed drying of moist particles. Exergy Int J. 2002. https://doi.org/10.1016/S1164-0235(01)00044-9.

    Article  Google Scholar 

  97. 97.

    Salazar-Pereyra M, Toledo-Velázquez M, Eslava GT, Lugo-Leyte R, Rosas CR. Energy and exergy analysis of moist air for application in power plants. Energy Power Eng. 2011. https://doi.org/10.4236/epe.2011.33048.

    Article  Google Scholar 

  98. 98.

    Mohammadi A, Ahmadi MH, Bidi M, Ghazvini M, Ming T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Rep. 2018. https://doi.org/10.1016/j.egyr.2018.03.001.

    Article  Google Scholar 

  99. 99.

    Caliskan H, Dae-Young L, Hiki H. Enhanced thermodynamic assessments of the novel desiccant air-cooling system for sustainable energy future. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2018.11.174.

    Article  Google Scholar 

  100. 100.

    Sakulpipatsin P, Van Der Kooi HJ, Itard LCM, Boelman EC. The influence of possible definitions of a reference environment to determine the exergy of air in buildings. Int J Exergy. 2008. https://doi.org/10.1504/IJEX.2008.018111.

    Article  Google Scholar 

  101. 101.

    Wepfer WJ, Gaggioli RA, Obert EF. Proper evaluation of available energy for HVAC. 1979

  102. 102.

    Dinçer İ, Rosen MA. Exergy analysis of heating, refrigerating and air conditioning: methods and applications. Cambridge: Academic Press; 2015.

    Google Scholar 

  103. 103.

    Mohammadi A, Ahmadi MH, Bidi M, Joda F, Valero A, Uson S. Exergy analysis of a combined cooling, heating and power system integrated with wind turbine and compressed air energy storage system. Energy Convers Manage. 2017. https://doi.org/10.1016/j.enconman.2016.11.003.

    Article  Google Scholar 

  104. 104.

    Chandrasekharan M. Exergy analysis of vapor compression refrigeration system using R12 and R134a as refrigerants. Int J Stud Res Technol Manag. 2015;2(4):134–9.

    Google Scholar 

  105. 105.

    Bolaji BO. Exergetic performance of a domestic refrigerator using R12 and its alternative refrigerants. J Eng Sci Technol. 2010;5(4):435–46.

    Google Scholar 

  106. 106.

    Adegoke CO, Akintunde MA, Fapetu OP. Comparative exergetic analysis of vapor compression refrigeration systems in the superheated and subcooled regions. AU J Technol. 2007;10(4):254–63.

    Google Scholar 

  107. 107.

    Khan MN, Khan MM, Ashar M, Khan AZ. Energy and exergy analysis of vapor compression refrigeration system with R12, R22, R134a. Int J Emerg Technol Adv Eng. 2015. https://doi.org/10.1002/er.1538.

    Article  Google Scholar 

  108. 108.

    Kotas TJ. The exergy method of thermal plant analysis. Essex: Anchor Brendon ltd.; 1985.

    Google Scholar 

  109. 109.

    Petela R. Thermodynamic study of a simplified model of the solar chimney power plant. Sol Energy. 2009. https://doi.org/10.1016/j.solener.2008.07.001.

    Article  Google Scholar 

  110. 110.

    Wu H, Hua B. Exergy calculation and its applications. J Chem Ind Eng-China-. 2007;58(11):2697.

    CAS  Google Scholar 

  111. 111.

    Enteria N, Akbarzadeh A. Solar energy sciences and engineering applications. Boca Raton: CRC Press; 2013.

    Google Scholar 

  112. 112.

    Szargut J. Exergy method: technical and ecological applications (Vol. 18). WIT Press; 2005.

  113. 113.

    Palmeri L, Barausse A, Jorgensen SE. Ecological processes handbook. Boca Raton: CRC Press; 2013.

    Google Scholar 

  114. 114.

    Bejan A, Tsatsaronis G. Thermal design and optimization. New York: Wiley; 1996.

    Google Scholar 

  115. 115.

    Gaudreau K, Fraser RA, Murphy S. The tenuous use of exergy as a measure of resource value or waste impact. Sustainability. 2009. https://doi.org/10.3390/su1041444.

    Article  Google Scholar 

  116. 116.

    Jorgensen SE, Svirezhev YM. Towards a thermodynamic theory for ecological systems. Amsterdam: Elsevier; 2004.

    Google Scholar 

  117. 117.

    Maddah H, Sadeghzadeh M, Ahmadi MH, Kumar R, Shamshirband S. Modeling and efficiency optimization of steam boilers by employing neural networks and response-surface method (RSM). Mathematics. 2019. https://doi.org/10.3390/math7070629.

    Article  Google Scholar 

  118. 118.

    Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng. 2019. https://doi.org/10.1002/ese3.381.

    Article  Google Scholar 

  119. 119.

    Ahmadi MH, Alhuyi Nazari M, Sadeghzadeh M, Pourfayaz F, Ghazvini M, Ming T, Sharifpur M. Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: a review. Energy Sci Eng. 2019. https://doi.org/10.1002/ese3.223.

    Article  Google Scholar 

  120. 120.

    Holman JP. Experimental methods for engineers. Singapore: Eight Edit. McGraw Hill; 2011.

    Google Scholar 

  121. 121.

    Dogru M, Midilli A, Howarth CR. Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis. Fuel Process Technol. 2002. https://doi.org/10.1016/S0378-3820(01)00234-X.

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support of the project entitled “Developing a Vacuum Cooling System and Application in the Food Industry” (Project Number: 106 M 262) and Pamukkale University in Turkey.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hande Mutlu Ozturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mutlu Ozturk, H. Energy and exergy analyses of vacuum cooling as experimental assessment: case study for boiled cauliflower (Brassica Oleracea Var). J Therm Anal Calorim (2021). https://doi.org/10.1007/s10973-020-10487-3

Download citation

Keywords

  • Vacuum cooling
  • Energy
  • Exergy
  • Exergetic efficiency