Numerical analysis for performance enhancement of thermoelectric generator modules by using CNT–water and hybrid Ag/MgO–water nanofluids

Abstract

The aim of this study is to investigate the performance enhancement of thermoelectric generator module with different nanofluids. CNT–water nanofluid and Ag/MgO–water hybrid nanofluids are used in a 3D channel where thermoelectric generator modules are mounted. 3D coupled multi-physics simulations are performed by using Galerkin weighted residual finite element method. It was observed that the power output of the module enhances with the inclusion of nanoparticles. Configuration with hybrid nanofluid produces the highest output power. At Reynolds number of 500, increasing the solid volume faction from 0.005 to 0.2, the output power of the thermoelectric generator rises by about 5.84% and 9.30% for CNT–water and hybrid nanofluid. However, at Reynolds number of 1500, using CNT–water nanofluid becomes effective and the amount of increment will be 6.6%. The efficiencies of the module rise with Reynolds number and solid particle volume fraction, while the values are low.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

\(C_{\text{P}}\) :

Specific heat capacity

E :

Electric field

h :

Height

J :

Current density

k :

Thermal conductivity

l :

Length

N :

Number of pairs

P :

Power

q :

Heat flux

Q :

Heat transfer rate

R :

Resistance

Re:

Reynolds number

u, v :

Velocity

V :

Voltage

w :

Width

ZT :

Figure of merit

α :

Seebeck coefficient

ρ :

Density

σ :

Electrical conductivity

\(\mu_{\text{f}}\) :

Dynamic viscosity

\(\emptyset\) :

Solid volume fraction

η :

Efficiency

f:

Fluid

hyb:

Hybrid

nf:

Nanofluid

References

  1. 1.

    Elsheikh MH, Shnawah DA, Sabri MFM, Said SBM, Hassan MH, Bashir MBA, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew Sustain Energy Rev. 2014;30:337–55.

    Google Scholar 

  2. 2.

    Zhao D, Tan G. A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng. 2014;66(1–2):15–24.

    CAS  Google Scholar 

  3. 3.

    Yang J, Stabler FR. Automotive applications of thermoelectric materials. J Electron Mater. 2009;38(7):1245–51.

    CAS  Google Scholar 

  4. 4.

    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Appl Energy. 2015;143:1–25.

    Google Scholar 

  5. 5.

    Cui T, Xuan Y, Yin E, Li Q, Li D. Experimental investigation on potential of a concentrated photovoltaic–thermoelectric system with phase change materials. Energy. 2017;122:94–102.

    CAS  Google Scholar 

  6. 6.

    Jo SE, Kim MS, Kim MK, Kim YJ. Power generation of a thermoelectric generator with phase change materials. Smart Mater Struct. 2013;22(11):115008.

    Google Scholar 

  7. 7.

    Atouei SA, Ranjbar AA, Rezania A. Experimental investigation of two-stage thermoelectric generator system integrated with phase change materials. Appl Energy. 2017;208:332–43.

    Google Scholar 

  8. 8.

    Rehman T, Ali HM. Thermal performance analysis of metallic foam-based heat sinks embedded with RT-54HC paraffin: an experimental investigation for electronic cooling. J Therm Anal Calorim. 2020;140:979990.

    Google Scholar 

  9. 9.

    Selimefendigil F, Oztop HF. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder. Sol Energy. 2019;200:61–75.

    Google Scholar 

  10. 10.

    Rehman T, Ali HM, Janjua MM, Sajjad U, Yan WM. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Transf. 2019;135:649–73.

    CAS  Google Scholar 

  11. 11.

    Rehman T, Ali HM. Experimental investigation on paraffin wax integrated with copper foam based heat sinks for electronic components thermal cooling. Int Commun Heat Mass Transf. 2018;98:155–62.

    CAS  Google Scholar 

  12. 12.

    Bayrak F, Oztop HF, Selimefendigil F. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Convers Manag. 2020;212:112789.

    CAS  Google Scholar 

  13. 13.

    Rehman T, Ali HM, Saieed A, Pao W, Ali M. Copper foam/PCMs based heat sinks: an experimental study for electronic cooling systems. Int J Heat Mass Transf. 2018;127:381–93.

    CAS  Google Scholar 

  14. 14.

    Esfe MH, Kamyab MH, Valadkhani M. Application of nanofluids and fluids in photovoltaic thermal system: an updated review. Sol Energy. 2020;199:796–818.

    Google Scholar 

  15. 15.

    Javed S, Ali HM, Babar H, Khan MS, Janjua MM, Bashir MA. Internal convective heat transfer of nanofluids in different flow regimes: a comprehensive review. Phys A Stat Mech Appl. 2020;538:122783.

    CAS  Google Scholar 

  16. 16.

    Akram N, Sadri R, Kazi S, Zubir MNM, Ridha M, Ahmed W, et al. A comprehensive review on nanofluid operated solar flat plate collectors. J Therm Anal Calorim. 2020;139(2):1309–43.

    CAS  Google Scholar 

  17. 17.

    Hussein AK, Li D, Kolsi L, Kata S, Sahoo B. A review of nano fluid role to improve the performance of the heat pipe solar collectors. Energy Procedia. 2017;109:417–24.

    CAS  Google Scholar 

  18. 18.

    Wanic M, Cabaleiro D, Hamze S, Fal J, Estellé P, Żyła G. Surface tension of ethylene glycol-based nanofluids containing various types of nitrides. J Therm Anal Calorim. 2020;139(2):799–806.

    CAS  Google Scholar 

  19. 19.

    Tayebi T, Chamkha AJ. Magnetohydrodynamic natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. J Therm Sci Eng Appl. 2020;12(3):031009.

    CAS  Google Scholar 

  20. 20.

    Le Ba T, Mahian O, Wongwises S, Szilágyi IM. Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim. 2020;1–28.

  21. 21.

    Hussein AK, Hamzah HK, Ali FH, Kolsi L. Mixed convection in a trapezoidal enclosure filled with two layers of nanofluid and porous media with a rotating circular cylinder and a sinusoidal bottom wall. J Therm Anal Calorim. 2019;1–19.

  22. 22.

    Tayebi T, Chamkha AJ. Entropy generation analysis during MHD natural convection flow of hybrid nanofluid in a square cavity containing a corrugated conducting block. Int J Numer Methods Heat Fluid Flow. 2019;30:1115–36.

    Google Scholar 

  23. 23.

    Rostami S, Toghraie D, Esfahani MA, Hekmatifar M, Sina N. Predict the thermal conductivity of SiO2/water–ethylene glycol (50:50) hybrid nanofluid using artificial neural network. J Therm Anal Calorim. 2020;1–10.

  24. 24.

    Al-Rashed AA, Aich W, Kolsi L, Mahian O, Hussein AK, Borjini MN. Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: three-dimensional modeling. Entropy. 2017;19(5):200.

    Google Scholar 

  25. 25.

    Selimefendigil F, Oztop HF. Effects of nanoparticle shape on slot-jet impingement cooling of a corrugated surface with nanofluids. J Therm Sci Eng Appl. 2017;9(2):021016.

    Google Scholar 

  26. 26.

    Selimefendigil F, Oztop HF. Fluid–solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with magnetic field. Int J Mech Sci. 2019;152:185–97.

    Google Scholar 

  27. 27.

    Almeshaal MA, Kalidasan K, Askri F, Velkennedy R, Alsagri AS, Kolsi L. Threedimensional analysis on natural convection inside a T-shaped cavity with water-based CNT–aluminum oxide hybrid nanofluid. J Therm Anal Calorim. 2020;139(3):2089–98.

    CAS  Google Scholar 

  28. 28.

    Chamkha AJ, Selimefendigil F, Ismael MA. Mixed convection in a partially layered porous cavity with an inner rotating cylinder. Numer Heat Transf Part A Appl. 2016;69(6):659–75.

    Google Scholar 

  29. 29.

    Tayebi T, Ferhat CE, Rezig N, Djezzar M. Free convection in a carbon nanotube–water nanofluid filled enclosure with power-law variation wall temperature. J Nanofluids. 2016;5(4):531–42.

    Google Scholar 

  30. 30.

    Selimefendigil F, Oztop HF. Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall. J Therm Sci Eng Appl. 2018;10(4):041003.

    Google Scholar 

  31. 31.

    Kolsi L, Algarni S, Mohammed HA, Hassen W, Lajnef E, Aich W, et al. 3D Magnetobuoyancy-thermocapillary convection of CNT–water nanofluid in the presence of a magnetic field. Processes. 2020;8(3):258.

    CAS  Google Scholar 

  32. 32.

    Borode A, Ahmed N, Olubambi P. A review of solar collectors using carbon-based nanofluids. J Clean Prod. 2019;241:118311.

    CAS  Google Scholar 

  33. 33.

    Taherian H, Alvarado JL, Languri EM. Enhanced thermophysical properties of multiwalled carbon nanotubes based nanofluids. Part 1: critical review. Renew Sustain Energy Rev. 2018;82:4326–36.

    CAS  Google Scholar 

  34. 34.

    Yazid MNAWM, Sidik NAC, Yahya WJ. Heat and mass transfer characteristics of carbon nanotube nanofluids: a review. Renew Sustain Energy Rev. 2017;80:914–41.

    CAS  Google Scholar 

  35. 35.

    Leong K, Ahmad KK, Ong HC, Ghazali MJ, Baharum A. Synthesis and thermal conductivity characteristic of hybrid nanofluids—a review. Renew Sustain Energy Rev. 2017;75:868–78.

    CAS  Google Scholar 

  36. 36.

    Babu JR, Kumar KK, Rao SS. State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev. 2017;77:551–65.

    Google Scholar 

  37. 37.

    Sidik NAC, Adamu IM, Jamil MM, Kefayati G, Mamat R, Najafi G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. Int Commun Heat Mass Transf. 2016;78:68–79.

    CAS  Google Scholar 

  38. 38.

    Benkhedda M, Boufendi T, Tayebi T, Chamkha AJ. Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J Therm Anal Calorim. 2019;140:411–25.

    Google Scholar 

  39. 39.

    Minea AA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transf. 2017;104:852–60.

    CAS  Google Scholar 

  40. 40.

    Selimefendigil F, Oztop HF. Impact of a rotating cone on forced convection of Ag–MgO/water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects. J Therm Anal Calorim. 2020;1–17.

  41. 41.

    Tayebi T, Oztop HF. Entropy production during natural convection of hybrid nanofluid in an annular passage between horizontal confocal elliptic cylinders. Int J Mech Sci. 2020;171:105378.

    Google Scholar 

  42. 42.

    Selimefendigil F, Chamkha AJ. MHD mixed convection of Ag–MgO/water nanofluid in a triangular shape partitioned lid-driven square cavity involving a porous compound. J Therm Anal Calorim. 2020;1–18.

  43. 43.

    Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications—a state-of-theart review. Int J Heat Mass Transf. 2018;125:82–103.

    CAS  Google Scholar 

  44. 44.

    Sundar LS, Sharma K, Singh MK, Sousa A. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98.

    CAS  Google Scholar 

  45. 45.

    Babar H, Ali HM. Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J Mol Liq. 2019;281:598–633.

    CAS  Google Scholar 

  46. 46.

    Li Y, Wu Z, Xie H, Xing J, Mao J, Wang Y, et al. Study on the performance of TEG with heat transfer enhancement using graphene–water nanofluid for a TEG cooling system. Sci China Technol Sci. 2017;60(8):1168–74.

    CAS  Google Scholar 

  47. 47.

    Zhou S, Sammakia BG, White B, Borgesen P, Chen C. Multiscale modeling of thermoelectric generators for conversion performance enhancement. Int J Heat Mass Transf. 2015;81:639–45.

    Google Scholar 

  48. 48.

    Karana DR, Sahoo RR. Effect on TEG performance for waste heat recovery of automobiles using MgO and ZnO nanofluid coolants. Case Stud Therm Eng. 2018;12:358–64.

    Google Scholar 

  49. 49.

    Li Z, Li W, Chen Z. Performance analysis of thermoelectric based automotive waste heat recovery system with nanofluid coolant. Energies. 2017;10(10):1489.

    CAS  Google Scholar 

  50. 50.

    Goldsmid HJ. Introduction to thermoelectricity, vol. 121. Berlin: Springer; 2010.

    Google Scholar 

  51. 51.

    Rowe D. Recent developments in thermoelectric materials. Appl Energy. 1986;24(2):139–62.

    CAS  Google Scholar 

  52. 52.

    McCarty R. Thermoelectric power generator design for maximum power: its all about ZT. J Electron Mater. 2013;42(7):1504–8.

    CAS  Google Scholar 

  53. 53.

    Fan S, Gao Y. Numerical simulation on thermoelectric and mechanical performance of annular thermoelectric generator. Energy. 2018;150:38–48.

    Google Scholar 

  54. 54.

    Chen J, Li K, Liu C, Li M, Lv Y, Jia L, et al. Enhanced efficiency of thermoelectric generator by optimizing mechanical and electrical structures. Energies. 2017;10(9):1329.

    Google Scholar 

  55. 55.

    Cheng F. Calculation methods for thermoelectric generator performance. In: Nikitin M, Skipidarov S, editors. Thermoelectrics for power generation: a look at trends in the technology. Norderstedt: BoD–Books on Demand; 2016. p. 481.

    Google Scholar 

  56. 56.

    Kramer LR, Maran ALO, de Souza SS, Ando Junior OH. Analytical and numerical study for the determination of thermoelectric generators internal resistance. Energies. 2019;12(16):3053.

    Google Scholar 

  57. 57.

    Ma Y, Mohebbi R, Rashidi M, Yang Z. MHD convective heat transfer of Ag–MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf. 2019;137:714–26.

    CAS  Google Scholar 

  58. 58.

    Khan W, Khan Z, Rahi M. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary. Appl Nanosci. 2014;4(5):633–41.

    CAS  Google Scholar 

  59. 59.

    Xue Q. Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter. 2005;368(1–4):302–7.

    CAS  Google Scholar 

  60. 60.

    Imtiaz M, Hayat T, Alsaedi A, Ahmad B. Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects. Int J Heat Mass Transf. 2016;101:948–57.

    CAS  Google Scholar 

  61. 61.

    Esfe MH, Arani AAA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95.

    Google Scholar 

  62. 62.

    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571.

    CAS  Google Scholar 

  63. 63.

    Halelfadl S, Estellé P, Aladag B, Doner N, Maré T. Viscosity of carbon nanotubes waterbased nanofluids: influence of concentration and temperature. Int J Therm Sci. 2013;71:111–7.

    CAS  Google Scholar 

  64. 64.

    Benos LT, Karvelas E, Sarris I. Crucial effect of aggregations in CNT–water nanofluid magnetohydrodynamic natural convection. Therm Sci Eng Prog. 2019;11:263–71.

    Google Scholar 

  65. 65.

    Kim CN. Development of a numerical method for the performance analysis of thermoelectric generators with thermal and electric contact resistance. Appl Therm Eng. 2018;130:408–17.

    Google Scholar 

  66. 66.

    Zhou S, Sammakia BG, White B, Borgesen P. Multiscale modeling of thermoelectric generators for the optimized conversion performance. Int J Heat Mass Transf. 2013;62:435–44.

    Google Scholar 

  67. 67.

    Comsol User Guide. Heat transfer and AC/DC module. Stockholm: Comsol AB; 2019.

    Google Scholar 

  68. 68.

    Kherbeet AS, Mohammed H, Salman B, Ahmed HE, Alawi OA, Rashidi M. Experimental study of nanofluid flow and heat transfer over microscale backward-and forwardfacing steps. Exp Therm Fluid Sci. 2015;65:13–21.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fatih Selimefendigil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selimefendigil, F., Okulu, D. & Mamur, H. Numerical analysis for performance enhancement of thermoelectric generator modules by using CNT–water and hybrid Ag/MgO–water nanofluids. J Therm Anal Calorim 143, 1611–1621 (2021). https://doi.org/10.1007/s10973-020-09983-3

Download citation

Keywords

  • TEG
  • Hybrid nanofluid
  • Coupled simulations
  • CNT–water nanofluid