Thermodynamic and environmental analyses for paddy drying in a semi-industrial dryer

Abstract

In the present work, the first and second laws of thermodynamics were used to perform energy and exergy analyses for deep bed drying of paddy in a convective dryer. Also, the equivalent specific CO2 emission was assessed. Drying experiments were carried out at drying air temperatures of 40, 50 and 60 °C, and air flow rates of 0.008, 0.012 and 0.017 m3 s−1. Energy utilization, energy utilization ratio and energy efficiency were obtained to be in the range of 0.061‒0.1412 kJ s−1, 22.41‒46.81% and 4.37‒8.56%, respectively. Exergy loss decreased continually with drying time and the average values ranged from 0.019 to 0.081 kJ s−1. Exergy efficiency varied in the range of 32.44‒66.91%. Energy and exergy efficiency was improved at low temperature‒low flow rate and high temperature‒high flow rate, respectively. The results of environmental analysis declared that specific CO2 emission ranged from 3.83 to 8.42 kg \( _{{{\text{CO}}_{2} }} \) kg−1water where high temperature‒low flow rate drying air reduced the footprint.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Süfer Ö, Palazoğlu TK. A study on hot-air drying of pomegranate: kinetic of dehydration, rehydration and effects on bioactive compounds. J Therm Anal Calorim. 2019;137:1981–90.

    Article  Google Scholar 

  2. 2.

    Selimefendigil F, Çoban SÖ, Öztop HF. Convective drying of a moist porous object under the effects of a rotating cylinder in a channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09140-5.

    Article  Google Scholar 

  3. 3.

    Tohidi M, Sadeghi M, Torki-Harchegani M. Energy and quality attributes for fixed deep bed drying of paddy. Renew Sustain Energy Rev. 2017;70:519–28.

    Article  Google Scholar 

  4. 4.

    Nazghelichi T, Kianmehr MH, Aghbashlo M. Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy. 2010;35:4679–84.

    Article  Google Scholar 

  5. 5.

    Darvishi H, Zarein M, Farhudi Z. Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices. J Food Sci Technol. 2016;53:2317–33.

    CAS  Article  Google Scholar 

  6. 6.

    Aghbashlo M, Mobli H, Rafiee S, Madadlou A. A review on exergy analysis of drying processes and systems. Renew Sustain Energy Rev. 2013;22:1–22.

    Article  Google Scholar 

  7. 7.

    Singh RP. Energy consumption and conservation in food sterilization. Food Technol. 1977;31:57–60.

    Google Scholar 

  8. 8.

    Aviara NA, Onuoha LN, Falola OE, Igbeka JC. Energy and exergy analyses of native cassava starch drying in a tray dryer. Energy. 2014;73:809–17.

    Article  Google Scholar 

  9. 9.

    Syahrul S, Hamdullahpur F, Dincer I. Exergy analysis of fluidized bed drying of moist particles. Exergy Int J. 2002;2:87–98.

    Article  Google Scholar 

  10. 10.

    Dincer I. Exergy as a potential tool for sustainable drying systems. Sustain Cities Soc. 2011;1:91–6.

    Article  Google Scholar 

  11. 11.

    Prommas R, Rattanadecho P, Cholaseul D. Energy and exergy analyses in drying process of porous media using hot air. Int Commun Heat Mass Transf. 2010;37:372–8.

    Article  Google Scholar 

  12. 12.

    Akpinar EK, Midilli A, Bicer Y. The first and second law analyses of thermodynamic of pumpkin drying process. J Food Eng. 2006;72:320–31.

    Article  Google Scholar 

  13. 13.

    Akbulut AO, Durmus A. Energy exergy analysis of thin layer drying of mulberry in a forced solar dryer. Energy. 2010;35:1754–63.

    Article  Google Scholar 

  14. 14.

    Ranjbaran M, Zare D. Simulation of energetic- and exergetic performance of microwave-assisted fluidized bed drying of soybeans. Energy. 2013;59:484–93.

    Article  Google Scholar 

  15. 15.

    Midilli A, Kucuk H. Energy and exergy analyses of solar drying process of pistachio. Energy. 2003;28:539–56.

    Article  Google Scholar 

  16. 16.

    Aghbashlo M, Mobli H, Rafiee S, Madalou A. Energy and exergy analyses of the spray drying process of fish oil encapsulation. Biosyst Eng. 2012;111:229–41.

    Article  Google Scholar 

  17. 17.

    Corzo O, Bracho N, Vásquez A, Pereira A. Energy and exergy analyses of thin layer drying of coroba slices. J Food Eng. 2008;86:151–61.

    Article  Google Scholar 

  18. 18.

    Zare D, Naderi H, Ranjbaran M. Energy and quality attributes of combined hot-air/infrared drying of paddy. Dry Technol. 2015;33:570–82.

    Article  Google Scholar 

  19. 19.

    Sangdao C, Songsermpong S, Krairiksh M. A continuous fluidized bed microwave paddy drying system using applicators with perpendicular slots on a concentric cylindrical cavity. Dry Technol. 2011;29:35–46.

    Article  Google Scholar 

  20. 20.

    Soponronnarit S, Prachayawarakorn S, Rordprapat W, Nathakaranakule A, Tia W. A superheated-steam fluidized-bed dryer for parboiled rice: testing of a pilot-scale & mathematical model development. Dry Technol. 2006;24:1457–67.

    CAS  Article  Google Scholar 

  21. 21.

    Naghavi Z, Moheb A, Ziaei-rad S. Numerical simulation of rough rice drying in a deep-bed dryer using non-equilibrium model. Energ Convers Manag. 2010;51:258–64.

    Article  Google Scholar 

  22. 22.

    Zare D, Minaei S, Mohamad Zade M, Khoshtaghaza MH. Computer simulation of rough rice drying in a batch dryer. Energ Convers Manag. 2006;47:3241–54.

    CAS  Article  Google Scholar 

  23. 23.

    Akpinar EK. Energy and exergy analyses of drying of eggplant slices in a cyclone type dryer. J Mech Sci Technol. 2005;19:692–703.

    Article  Google Scholar 

  24. 24.

    Kesavan S, Arjunan TV, Vijayan S. Thermodynamic analysis of a triple-pass solar dryer for drying potato slices. J Therm Anal Calorim. 2019;136:159–71.

    CAS  Article  Google Scholar 

  25. 25.

    Khoshnevisan B, Rafiee S, Iqbal J, Shamshirband Sh, Omid M, Badrul Anuar N, Abdul Wahab AW. A comparative study between artificial neural networks and adaptive neuro-fuzzy inference system for modeling energy consumption in greenhouse tomato production: a case study in Isfahan province. J Agric Sci Technol. 2015;17:49–62.

    Google Scholar 

  26. 26.

    Beigi M, Tohidi M, Torki-Harchegani M. Exergetic analysis of deep-bed drying of rough rice in a convective dryer. Energy. 2017;140:374–82.

    Article  Google Scholar 

  27. 27.

    Aral S, Bese AV. Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 2016;210:577–84.

    CAS  Article  Google Scholar 

  28. 28.

    Martynenko A, Zheng W. Electrohydrodynamic drying of apple slices: energy and quality aspects. J Food Eng. 2016;168:215–22.

    Article  Google Scholar 

  29. 29.

    Tulek Y. Drying kinetics of oyster mushroom (Pleurotus ostreatus) in a convective hot air dryer. J Agric Sci Technol. 2011;13:655–64.

    Google Scholar 

  30. 30.

    Sadin R, Chegini GR, Sadin H. The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat Mass Transf. 2014;50:501–7.

    Article  Google Scholar 

  31. 31.

    Beigi M. Drying of mint leaves: influence of the Process temperature on dehydration parameters, quality attributes, and energy consumption. J Agric Sci Technol. 2019;21:77–88.

    Google Scholar 

  32. 32.

    Nikbakht AM, Motevali A, Minaei S. Energy and exergy investigation of microwave assisted thin-layer drying of pomegranate arils using artificial neural networks and response surface methodology. J Saudi Soc Agric Sci. 2014;13:81–91.

    Google Scholar 

  33. 33.

    Motevali A, Minaei S. Effects of microwave pretreatment on the energy and exergy utilization in thin-layer drying of sour pomegranate arils. Chem Ind Chem Eng Q. 2012;18:63–72.

    CAS  Article  Google Scholar 

  34. 34.

    Akpinar EK. Drying of parsley leaves in a solar dryer and under open sun: modeling, energy and exergy aspects. J Food Process Eng. 2011;34:27–48.

    Article  Google Scholar 

  35. 35.

    Erbay Z, Icier F. Energy and exergy analysis on drying of olive leaves (Olea europaea L.) in tray drier. J Food Process Eng. 2011;34:2105–23.

    Article  Google Scholar 

  36. 36.

    Surendhar A, Sivasubramanian V, Vidhyeswari D, Deepanraj B. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. J Therm Anal Calorim. 2019;136:185–97.

    CAS  Article  Google Scholar 

  37. 37.

    Akpinar EK. Energy and exergy analyses of drying of red pepper slices in convective type dryer. Int Commun Heat Mass Transf. 2004;31:1165–76.

    Article  Google Scholar 

  38. 38.

    Fudholi A, Sopian K, Othamn MY, Ruslan MH. Energy and exergy analyses of solar drying system of red seaweed. Energy Build. 2014;68:121–9.

    Article  Google Scholar 

  39. 39.

    Ghanbarian D, Torki-Harchegani M, Sadeghi M, Ghasemi PirbaloutiA. Ultrasonically improved convective drying of peppermint leaves: influence on the process time and energetic indices. Renew Energy. 2020;153:67–73.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the Language Center of Tiran Branch, Islamic Azad University, to finalize the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohsen Beigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beigi, M., Torki, M., Khoshnam, F. et al. Thermodynamic and environmental analyses for paddy drying in a semi-industrial dryer. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09968-2

Download citation

Keywords

  • Semi-industrial drying
  • Rough rice
  • Energy utilization
  • Exergy efficiency
  • CO2 emission