Effect of precision casting sand waste of 4140 steel on the sintering and densification behaviour of chamotte refractories


In this study, the sintering behaviour and densifications of chamotte refractories that were produced by incorporation of 4140 precision casting sand waste at different ratios are investigated. Thermal properties are examined using thermogravimetry and differential scanning calorimetry thermal analysis methods. Open porosities and densities of refractories have been determined using Archimedes principles according to ASTM C20. The chemical analysis of raw material and phase analysis of refractories, and also chamotte raw material and sintered chamotte material at 1723 K, are obtained by X-ray fluorescence and X-ray diffraction, respectively. In addition, the changes in microstructure are characterized using a scanning electron microscope. According to the results, chamotte refractory that was produced by 10% 4140 precision casting sand waste has the highest density and lowest open porosity due to the smallest grain size after sintering compared with those of pure (C0) refractory and chamotte refractory with the addition of 20% 4140 precision casting sand waste.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Kausik D, Somnath S, Himansu ST, Arup G. Refractories of alumina-silica system. Trans Ind Ceram Soc. 2014. https://doi.org/10.1080/0371750X.2014.905265.

    Article  Google Scholar 

  2. 2.

    Djangang CN, Elimbi A, Melo UC, Lecomte GL, Nkoumbou C, Soro J, Bonnet JP, Blanchart P, Njopwouo D. Sintering of clay-chamotte ceramic composites for refractory bricks. Ceram Int. 2008. https://doi.org/10.1016/j.ceramint.2007.02.012.

    Article  Google Scholar 

  3. 3.

    Amrane B, Ouedraogo E, Mamen B, Djaknoun S, Mesrati N. Experimental study of the thermo-mechanical behaviour of alumina-silicate refractory materials based on a mixture of Algerian kaolinitic clays. Ceram Int. 2011. https://doi.org/10.1016/j.ceramint.2011.05.095.

    Article  Google Scholar 

  4. 4.

    Rendtorff NM, Garrido LB, Aglietti EF. Mechanical and fracture properties of zircon-mullite composites obtained by direct sintering. Ceram Int. 2009. https://doi.org/10.1016/j.ceramint.2009.03.040.

    Article  Google Scholar 

  5. 5.

    Wang LY, Hon MH. The effects of zircon addition on the crystallization of fused silica: a kinetic study. J Ceram Soc Jpn. 1994. https://doi.org/10.2109/jcersj.102.517.

    Article  Google Scholar 

  6. 6.

    Kazemi A, Faghihi-Sani MA, Nayyeri MJ, Mohammadi M, Hajfathalian M. Effect of zircon content on chemical and mechanical behavior of silica-based ceramic cores. Ceram Int. 2014. https://doi.org/10.1016/j.ceramint.2013.06.108.

    Article  Google Scholar 

  7. 7.

    Valášková M, Martynková GS, Zdrálková J, Vlček J, Matějková P. Cordierite composites reinforced with zircon arising from zirconium-vermiculite precursor. Mater Lett. 2012. https://doi.org/10.1016/j.matlet.2012.04.097.

    Article  Google Scholar 

  8. 8.

    Li YH, Cao JW, Liang KM. Preparation of porous spodumene/zircon composite ceramics and its thermal and mechanical properties. Adv Appl Ceram. 2009. https://doi.org/10.1179/174367608X362421.

    Article  Google Scholar 

  9. 9.

    Terzić A, Obradović N, Andrić L, Stojanović J, Pavlović V. Investigation of thermally induced processes in corundum refractory concretes with addition of fly ash. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-014-4230-4.

    Article  Google Scholar 

  10. 10.

    El-Didamony H, Amer AA, El-Hoseny S. Recycling of low-grade aluminosilicate refractory brick waste product in blended cement. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5431-9.

    Article  Google Scholar 

  11. 11.

    Koç S, Toplan N, Yildiz K, Özkan H. Toplan effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 2011. https://doi.org/10.1007/s10973-010-1154-5.

    Article  Google Scholar 

  12. 12.

    https://imd.agej.nih.gov/ij/. Accessed 15 Feb 2020.

  13. 13.

    Walker H. Handbook of refractory practise. Moon Township: Harbison-Walker Refractories Company; 2005.

    Google Scholar 

  14. 14.

    Richerson DW. Modern ceramic engineering. 2nd ed. New York: Marcel Dekker; 1992.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Tuba Bahtli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahtli, T., Bostanci, V.M. Effect of precision casting sand waste of 4140 steel on the sintering and densification behaviour of chamotte refractories. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09956-6

Download citation


  • Chamotte
  • Precision casting sand
  • Waste
  • Densification
  • Thermal analysis
  • Microstructure