Fireball modeling and thermal hazards analysis of leaked 1,1-difluoroethane in fluorine chemical industry based on FDS


To better understand the boiling liquid expanding vapor explosions (BLEVE) risk in the fluorine chemical industry, the detailed BLEVE properties of 1,1-difluoroethane were investigated based on fire dynamics simulator code of computational fluid dynamics in this work. The BLEVE fireball was modeled using appropriate numerical models and parameters. The analysis was developed to predict the fireball hazard especially the thermal radiation of 1,1-difluoroethane. The empirical equations of the fireball diameter, height, and duration are modified according to the simulation results. Fireballs have extremely high temperatures and cause strong thermal radiation to the surroundings. In the fluorine chemical industry, the 1,1-difluoroethane fireball can form the thermal radiation of more than 37.5 kW m−2 in the range of 65 m, resulting in high death probability. In addition, the domino effect manifestation of toxic gases inhalation and environmental wind effect on the fireball are also discussed. The results show that the simulation method is accurate and can be used for evaluating the BLEVE scenarios and analyzing the impact on the fluorine chemical facility.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Khan FI, Abbasi SA. Risk assessment in chemical process industries. New Delhi: Discovery Publishing House; 1998.

    Google Scholar 

  2. 2.

    Rausand M. Risk assessment: theory, methods, and applications. Hoboken: Wiley; 2013.

    Google Scholar 

  3. 3.

    Chang YM, You ML, Tseng JM, Wang YL, Lin CP, Shu CM. Evaluations of fire and explosion hazard for the mixtures of benzene and methanol using rough set method. J Therm Anal Calorim. 2010;102(2):523–33.

    CAS  Google Scholar 

  4. 4.

    Abu-Bakar AS, Cran MJ, Moinuddin KAM. Experimental investigation of effects of variation in heating rate, temperature and heat flux on fire properties of a non-charring polymer. J Therm Anal Calorim. 2019;137(2):447–59.

    CAS  Google Scholar 

  5. 5.

    Chen Q, Wang X, Zhou T, Ding C, Wang J. Investigation on the fire hazard characteristics of ethanol–water mixture and Chinese liquor by a cone calorimeter. J Therm Anal Calorim. 2019;135(4):2297–308.

    CAS  Google Scholar 

  6. 6.

    Liu JH, Chen MY, Lin X, Yuen R, Wang J. Impacts of ceiling height on the combustion behaviors of pool fires beneath a ceiling. J Therm Anal Calor. 2016;126(2):881–9.

    CAS  Google Scholar 

  7. 7.

    An WG, Jiang L, Sun JH, Liew KM. Correlation analysis of sample thickness, heat flux, and cone calorimetry test data of polystyrene foam. J Therm Anal Calorim. 2015;119(1):229–38.

    CAS  Google Scholar 

  8. 8.

    Ma X, Tu R, Xie QY, Jiang Y, Zhao YL, Wang N. Experimental study on the burning behaviors of three typical thermoplastic materials liquid pool fire with different mass feeding rates. J Therm Anal Calorim. 2016;123(1):329–37.

    CAS  Google Scholar 

  9. 9.

    Raj PK. LNG fires: a review of experimental results, models and hazard prediction challenges. J Hazard Mater. 2007;140(3):444–64.

    CAS  PubMed  Google Scholar 

  10. 10.

    Pula R, Khan FI, Veitch B, Amyotte PR. A grid based approach for fire and explosion consequence analysis. Process Saf Environ. 2006;84(2):79–91.

    CAS  Google Scholar 

  11. 11.

    Sklavounos S, Rigas F. Advanced multi-perspective computer simulation as a tool for reliable consequence analysis. Process Saf Environ. 2012;90(2):129–40.

    CAS  Google Scholar 

  12. 12.

    Chi JH. Using thermal analysis experiment and Fire Dynamics Simulator (FDS) to reconstruct an arson fire scene. J Therm Anal Calorim. 2013;113(2):641–8.

    CAS  Google Scholar 

  13. 13.

    Zhang SG, Ni XM, Zhao M, Feng JJ, Zhang RF. Numerical simulation of wood crib fire behavior in a confined space using cone calorimeter data. J Therm Anal Calorim. 2015;119(3):2291–303.

    CAS  Google Scholar 

  14. 14.

    Wu SH, Wu JY, Wu YT, Lee JC, Huang YH, Shu CM. Explosion evaluation and safety storage analyses of cumene hydroperoxide using various calorimeters. J Therm Anal Calorim. 2013;111(1):669–75.

    CAS  Google Scholar 

  15. 15.

    Kadri F, Châtelet E, Chen G. Method for quantitative assessment of the domino effect in industrial sites. Process Saf Environ. 2013;91(6):452–62.

    CAS  Google Scholar 

  16. 16.

    Khakzad N, Khan F, Amyotte P, Cozzani V. Domino effect analysis using Bayesian networks. Risk Anal Int J. 2013;33(2):292–306.

    Google Scholar 

  17. 17.

    Abbasi T, Abbasi SA. The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J Hazard Mater. 2007;141(3):489–519.

    CAS  PubMed  Google Scholar 

  18. 18.

    Hemmatian B, Casal J, Planas E, Rashtchian D. BLEVE: the case of water and a historical survey. J Loss Prev Process Ind. 2019;57:231–8.

    Google Scholar 

  19. 19.

    Planas E, Pastor E, Casal J, Bonilla JM. Analysis of the boiling liquid expanding vapor explosion (BLEVE) of a liquefied natural gas road tanker: the Zarzalico accident. J Loss Prev Process Ind. 2015;34:127–38.

    CAS  Google Scholar 

  20. 20.

    Zhang JQ, Laboureur D, Liu Y, Mannan MS. Lessons learned from a supercritical pressure BLEVE in Nihon Dempa Kogyo Crystal Inc. J Loss Prev Process Ind. 2016;41:315–22.

    Google Scholar 

  21. 21.

    Hemmatian B, Casal J, Planas E. Essential points in the emergency management in transport accidents which can lead to a bleve-fireball. Chem Eng Trans. 2017;57:439–44.

    Google Scholar 

  22. 22.

    Yakush SE. Model for blast waves of boiling liquid expanding vapor explosions. Int J Heat Mass Transf. 2016;103:173–85.

    Google Scholar 

  23. 23.

    Li M, Liu Z, Zhou Y, Zhao Y, Li X, Zhang D. A small-scale experimental study on the initial burst and the heterogeneous evolution process before CO2 BLEVE. J Hazard Mater. 2018;342:634–42.

    CAS  PubMed  Google Scholar 

  24. 24.

    Birk AM, Heymes F, Eyssette R, Lauret P, Aprin L, Slangen P. Near-field BLEVE overpressure effects: the shock start model. Process Saf Environ. 2018;116:727–36.

    CAS  Google Scholar 

  25. 25.

    Hemmatian B, Casal J, Planas E. A new procedure to estimate BLEVE overpressure. Process Saf Environ. 2017;111:320–5.

    CAS  Google Scholar 

  26. 26.

    Bubbico R, Mazzarotta B. Dynamic response of a tank containing liquefied gas under pressure exposed to a fire: a simplified model. Process Saf Environ. 2018;113:242–54.

    CAS  Google Scholar 

  27. 27.

    Hemmatian B, Planas E, Casal J. Fire as a primary event of accident domino sequences: the case of BLEVE. Reliab Eng Syst Saf. 2015;139:141–8.

    Google Scholar 

  28. 28.

    Li XR, Koseki H, Sam Mannan M. Case study: assessment on large scale LPG BLEVEs in the 2011 Tohoku earthquakes. J Loss Prev Process Ind. 2015;35:257–66.

    CAS  Google Scholar 

  29. 29.

    Reid RC. Possible mechanism for pressurized-liquid tank explosions or BLEVE’s. Science. 1979;203(4386):1263–5.

    CAS  PubMed  Google Scholar 

  30. 30.

    Scarponi GE, Landucci G, Birk AM, Cozzani V. LPG vessels exposed to fire: scale effects on pressure build-up. J Loss Prev Process Ind. 2018;56:342–58.

    CAS  Google Scholar 

  31. 31.

    Sellami I, Manescau B, Chetehouna K, de Izarra C, Nait-Said R, Zidani F. BLEVE fireball modeling using Fire Dynamics Simulator (FDS) in an Algerian gas industry. J Loss Prev Process Ind. 2018;54:69–84.

    Google Scholar 

  32. 32.

    Rajendram A, Khan F, Garaniya V. Modelling of fire risks in an offshore facility. Fire Saf J. 2015;71:79–85.

    CAS  Google Scholar 

  33. 33.

    Shelke AV, Maheshwari NK, Gera B, Singh RK. CFD analysis of hydrocarbon fireballs. Combust Sci Technol. 2017;189(8):1440–66.

    CAS  Google Scholar 

  34. 34.

    Blankenhagel P, Wehrstedt K-D, Mishra KB, Steinbach J. The capability of commercial CFD code to predict organic peroxide fireball characteristics. J Hazard Mater. 2019;365:386–94.

    CAS  PubMed  Google Scholar 

  35. 35.

    McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K. Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST Spec Publ. 2013;1018(1):175.

    Google Scholar 

  36. 36.

    McGrattan K, Forney GP. Fire dynamics simulator users guide NIST special publication 1019. Gaithersburg: National Institute of Standards and technology, US Department of Commerce; 2004.

    Google Scholar 

  37. 37.

    Alonso A, Lázaro M, Lázaro P, Lázaro D, Alvear D. Assessing the influence of the input variables employed by fire dynamics simulator (FDS) software to model numerically solid-phase pyrolysis of cardboard. J Therm Anal Calorim. 2020;140(1):263–73.

    CAS  Google Scholar 

  38. 38.

    Luther W, Müller WC. FDS simulation of the fuel fireball from a hypothetical commercial airliner crash on a generic nuclear power plant. Nucl Eng Des. 2009;239(10):2056–69.

    CAS  Google Scholar 

  39. 39.

    Forney GP. Smokeview (Version 5)—a tool for visualizing fire dynamics simulation data, volume I: user’s guide. 2017.

  40. 40.

    Makhviladze GM, Roberts JP, Yakush SE. Formation and combustion of gas clouds in accidental discharge to the atmosphere. Combust Explo Shock. 1997;33(2):144–56.

    Google Scholar 

  41. 41.

    Shariff AM, Wahab NA, Rusli R. Assessing the hazards from a BLEVE and minimizing its impacts using the inherent safety concept. J Loss Prev Process Ind. 2016;41:303–14.

    Google Scholar 

  42. 42.

    Raj PK. A review of the criteria for people exposure to radiant heat flux from fires. J Hazard Mater. 2008;159(1):61–71.

    CAS  PubMed  Google Scholar 

  43. 43.

    Hse UK, Osd HID. Methods of approximation and determination of human vulnerability for offshore major accident hazard assessment. London: Health and Safety Executive; 2006.

    Google Scholar 

  44. 44.

    Blankenhagel P, Wehrstedt KD, Mishra KB, Steinbach J. Thermal radiation assessment of fireballs using infrared camera. J Loss Prev Process Ind. 2018;54:246–53.

    CAS  Google Scholar 

Download references


This research was supported by the National Key Research and Development Program of China (2018YFC0808600), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (19KJB620003), the Double Innovation Plan of Jiangsu province, and Programs of Senior Talent Foundation of Jiangsu University (17JDG036).

Author information



Corresponding authors

Correspondence to Mingyi Chen or Jian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Li, H., Li, P. et al. Fireball modeling and thermal hazards analysis of leaked 1,1-difluoroethane in fluorine chemical industry based on FDS. J Therm Anal Calorim (2020).

Download citation


  • Fireball
  • Thermal radiation
  • Wind effect