Biomolecular interactions of selected buffers with hemoglobin

Abstract

To elucidate the influence of commonly used biological buffers on the hemoglobin (Hb) structure, biomolecular interactions between Hb and the selected buffers, including tris (hydroxymethyl) aminomethane (TRIS), N-[tris (hydroxymethyl) methyl]-3-aminopropanesulfonic acid (TAPS) and N-[tris (hydroxymethyl) methyl]-2-aminoethane-sulfonic-acid (TES), are investigated by using various biophysical spectroscopic and other techniques. The techniques used in this study are ultraviolet–visible (UV–Vis), fluorescence, circular dichroism (CD) and Fourier transform infrared spectroscopy and dynamic light scattering. Fluorescence spectra analysis reveals that the addition of biological buffers increases the hydrophobicity around the tryptophan environment in Hb. Evidently, the alpha-helix structure of Hb was slightly destroyed at higher concentrations of the buffers detected by CD spectroscopy. However, the thermal stability of the protein transition temperature (Tm) gradually increases with an increase in the concentration of the biological buffers. The results also show that generally the biological buffers are able to enhance the stability of Hb.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Dill KA. Dominant forces in protein folding. Biochemistry. 1990;29(31):7133–55.

    CAS  Google Scholar 

  2. 2.

    Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme applictions. Curr Opin Biotechnol. 2002;13(4):345–51.

    CAS  PubMed  Google Scholar 

  3. 3.

    Attri P, Venkatesu P, Kumar A. Water and a protic ionic liquid acted as refolding additives for chemically denatured enzymes. Org Biomol Chem. 2012;10(37):7475–8.

    CAS  PubMed  Google Scholar 

  4. 4.

    Shukla D, Schneider CP, Trout BL. Complex interactions between molecular ions in solution and their effect on protein stability. J Am Chem Soc. 2011;133(46):18713–8.

    CAS  PubMed  Google Scholar 

  5. 5.

    Perutz MF, Rossmann MG, Cullis AF, Muirhead H, Will G, North ACT. Structure of haemoglobin a three dimensional fourier synthesis at 5.5 Å resolution obtained by X-ray analysis. Nature. 1960;185(4711):416–22.

    CAS  Google Scholar 

  6. 6.

    Perutz MF. Stereochemistry of cooperative effects in haemoglobin. Nature. 1970;228(5273):726–34.

    CAS  PubMed  Google Scholar 

  7. 7.

    Perutz MF. Haemoglobin structure and respiratory transport. Sci Am. 1978;239(6):92–125.

    CAS  PubMed  Google Scholar 

  8. 8.

    Hirsch RE, Zukin RS, Nagel RL. Intrinsic fluorescence emission of intact oxy haemoglobins. Biochem Biophys Res Commun. 1980;93(2):432–9.

    CAS  PubMed  Google Scholar 

  9. 9.

    Venkateshrao S, Manoharan PT. Conformational changes monitored by fluorescence study on reconstituted hemoglobins. Spectrochim Acta, Part A. 2004;60(11):2523–6.

    CAS  Google Scholar 

  10. 10.

    Lu T, Panneerselvam K, Liaw Y, Kan P, Lee C. Structure determination of porcine haemoglobin. Acta Crystallogr Sect D: Biol Crystallogr. 2000;56(3):304–12.

    CAS  Google Scholar 

  11. 11.

    Levitsky VY, Panova AA, Mozhaev VV. Correlation of high-temperature stability of α-chymotrysin with salting-in properties of solution. Eur J Biochem. 1994;219(1–2):231–6.

    CAS  PubMed  Google Scholar 

  12. 12.

    Tanford C, Buckley CE, De PK, Lively EP. Effect of ethylene glycol on the conformation of γ-globulin and β-lactoglobulin. J Biol Chem. 1962;237(4):1168–71.

    CAS  PubMed  Google Scholar 

  13. 13.

    Doux AH, Willart JF, Paccou L, Guinet Y, Affouard F, Lerbret A, Descamps M. Thermostabilization mechanism of bovine serum albumin by trehalose. J Phys Chem B. 2009;113(17):6119–26.

    Google Scholar 

  14. 14.

    Arakawa T, Timasheff SN. Stabilization of protein structure by sugars. Biochemistry. 1982;21(25):653644.

    Google Scholar 

  15. 15.

    Rawat K, Bohidar HB. Univerasal charge quenching and stability of proteins in 1-methyl-3-alkyl (hexyl/octyl) imidazolium chloride ionic liquid solutions. J Phys Chem B. 2012;116(36):11065–74.

    CAS  PubMed  Google Scholar 

  16. 16.

    Akdogan Y, Junk MJN, Hinderberger D. Effect of ionic liquids on the solution structure of human serum albumin. Biomacromol. 2011;12(4):1072–9.

    CAS  Google Scholar 

  17. 17.

    Dagade DH, Madkar KR, Shinde SP, Barge SS. Thermodynamic studies of ionic hydration and interaction for amino acid ionic liquids in aqueous solutions at 298.15 K. J Phys Chem B. 2013;117(4):1031–43.

    CAS  PubMed  Google Scholar 

  18. 18.

    Yan H, Wu J, Dai G, Zhong A, Chen H, Yang JG, Han D. Interaction mechanisms of ionic liquids [Cnmim] Br (n = 4, 6, 8, 10) with bovine serum albumin. J Lumin. 2012;132(3):622–8.

    CAS  Google Scholar 

  19. 19.

    Taha M, Lee MJ. Interaction of TRIS [tris (hydroxymethyl) aminomethane] and related buffers with peptide backbone: thermodyanamic characterization. Phys Chem Chem Phys. 2010;12(39):12840–50.

    CAS  PubMed  Google Scholar 

  20. 20.

    Gupta BS, Taha M, Lee MJ. Interaction of bovine serum albumin with biological buffers, TES, TAPS, and TAPSO in aqueous solutions. Process Biochem. 2013;48(11):1686–96.

    CAS  Google Scholar 

  21. 21.

    Gupta BS, Taha M, Lee MJ. Buffer more than buffering agent: introducing a new class of stabilizers for the protein BSA. Phys Chem Chem Phys. 2015;17(20):1114–33.

    CAS  PubMed  Google Scholar 

  22. 22.

    Gupta BS, Taha M, Lee MJ. Superactivity of α-chymotrypsin with biological buffers, TRIS, TES, TAPS, and TAPSO in aqueous solutions. RSC Adv. 2014;4(93):51111–6.

    CAS  Google Scholar 

  23. 23.

    Thiela T, Liczkowskib L, Bissena ST. New zwitterionic butane sulfonic acids that extend the alkaline range of four families of good buffers: evaluation for use in biological systems. J Biochem Biophys Methods. 1998;37(3):117–29.

    Google Scholar 

  24. 24.

    Metrick MA, Temple JE, MacDonald G. The effect of buffers and pH on the thermal stability, unfolding and substrate binding of RecA. Biophys Chem. 2013;184:29–36.

    CAS  PubMed  Google Scholar 

  25. 25.

    Kim NA, An IB, Lim DG, Lim JY, Lee SY, Shim WS, Kang NG, Jeong SH. Effects of pH and buffer concentration on the thermal stability of etanercept using DSC and DLS. Bio Pharm Bull. 2014;37(5):808–16.

    CAS  Google Scholar 

  26. 26.

    Asad S, Torabi SF, Roudsari MF, Ghaemi N, Khajeh K. Phosphate buffer effects on thermal stability and H2O2-resistance of horseradish peroxidase. Int J Biol Macromol. 2011;48(4):566–70.

    CAS  PubMed  Google Scholar 

  27. 27.

    Marshall G, Valtchev P, Dehghani F. Thermal denaturation and protein stability analysis of Haliotis rubra hemocyanin. J Therm Anal Calorim. 2016;123(3):2499–505.

    CAS  Google Scholar 

  28. 28.

    Zhang HM, Wang YQ, Zhou QH, Wang GL. Molecular interaction between phosphomolybdate acid bovine hemoglobin. J Mol Struct. 2009;921(1):156–62.

    CAS  Google Scholar 

  29. 29.

    Bao X, Zhu Z, Li NQ, Chen J. Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin. Talanta. 2001;54(4):591–6.

    CAS  PubMed  Google Scholar 

  30. 30.

    Yang Q, Liang J, Han H. Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. J Phys Chem B. 2009;113(30):10454–8.

    CAS  PubMed  Google Scholar 

  31. 31.

    Zhao XC, Liu RT, Chi ZX, Teng Y, Qin PF. New insight into the behavior of bovine serum albumin adsorbed onto carbon nanotubes: comprehensive spectroscopic studies. J Phys Chem B. 2010;114(16):5625–31.

    CAS  PubMed  Google Scholar 

  32. 32.

    Wang YQ, Zhang HM, Zhang GC, Liu SX, Zhou QH, Fei ZH, Liu ZT. Studies of the interaction between paraquat and bovine hemoglobin. Int J Biol Macromol. 2007;41(3):243–50.

    CAS  PubMed  Google Scholar 

  33. 33.

    Yang AP, Ma MH, Li XH, Xue MY. Interaction of irbesartan with bovine hemoglobin using spectroscopic techniques and molecular docking. Spectrosc Int J. 2012;27(2):119–28.

    CAS  Google Scholar 

  34. 34.

    Mahmoud WH, Deghadi RG, Mohamed GG. Preparation, geometric structure, molecular docking thermal and spectroscopic characterization of novel Schiff base ligand and its metal chelates. J Therm Anal Calorim. 2017;127(3):2149–71.

    CAS  Google Scholar 

  35. 35.

    Wu T, Wu Q, Guan S, Su H, Cai Z. Binding of the environmental pollutant naphthol to bovine serum albumin. Biomacromol. 2007;8(6):1899–906.

    CAS  Google Scholar 

  36. 36.

    Zhou QH, Wang YQ, Zhang HM, Zhang GC, Fei ZH, Liu ZT. Spectroscopic studies on the interaction between imidacloprid and bovine hemoglobin (BHb). J Instrum Anal. 2007;26:368–72.

    CAS  Google Scholar 

  37. 37.

    Hirstch RE. Hemoglobin fluorescence. Methods Mol Med. 2003;82:133–54.

    Google Scholar 

  38. 38.

    Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Kluwer Academic/Plenum Publishers; 1999.

    Google Scholar 

  39. 39.

    Teng Y, Liu R, Yan S, Pan X, Zhang P, Wang M. Spectroscopic investigation on the toxicological interaction of 4-aminoantipyrine with bovine hemoglobin. J Fluoresc. 2010;20(1):381–7.

    CAS  PubMed  Google Scholar 

  40. 40.

    Wang YQ, Zhang HM, Wang RH. Investigation of the interaction between colloidal TiO2 and bovine hemoglobin using spectral methods. Colloids Surf B Biointerfaces. 2008;65(2):190–6.

    CAS  PubMed  Google Scholar 

  41. 41.

    Jha I, Attri P, Venkatesu P. Unexpected effects of the alteration of structure and stability of myoglobin and hemoglobin in ammonium-based ionic liquids. Phys Chem Chem Phys. 2014;16(12):5514–26.

    CAS  PubMed  Google Scholar 

  42. 42.

    Goldbeck RA, Esquerra RM, Kliger DS. Hydrogen bonding to Trp β37 is the first step in a compound path way for hemoglobin allostery. J Am Chem Soc. 2002;124(26):7646–7.

    CAS  PubMed  Google Scholar 

  43. 43.

    Jha I, Kumar A, Venkatesu P. The overriding roles of concentration and hydrophobic effect on structure and stability of heme protein induced by imidazolium-based ionic liquids. J Phys Chem B. 2015;119(26):8357–68.

    CAS  PubMed  Google Scholar 

  44. 44.

    Haifeng L, Yuwen L, Xioomin C, Zhiyong W, Cunxin W. Effects of sodium phosphate buffer on horseradish peroxidase thermal stability. J Therm Anal Calorim. 2008;93(2):569–74.

    CAS  Google Scholar 

  45. 45.

    From NB, Bowler BE. Urea denaturation of staphylococcal nuclease moni-tored by Fourier transform infrared spectroscopy. Biochemistry. 1998;37(6):1623–31.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin. 2007;39(8):549–59.

    CAS  PubMed  Google Scholar 

  47. 47.

    Jiang Y, Li C, Nguyen X, Muzammil S, Towers E, Gabrielson J, Narhi L. Qualification of FTIR spectroscopic method for protein secondary structural analysis. J Pharm Sci. 2011;100(11):4631–41.

    CAS  PubMed  Google Scholar 

  48. 48.

    Guncheva M, Todinova S, Yancheva D. Thermal stability and secondary structure of feruloylated Rapana thomasiana hemocyanin. J Therm Anal Calorim. 2019;138(4):2715–20.

    CAS  Google Scholar 

  49. 49.

    Bandekar J. Amide modes and protein conformation. Biochim Biophys Acta. 1992;1120(2):123–43.

    CAS  Google Scholar 

  50. 50.

    Tang J, Yang C, Zhou L, Ma F, Liu S, Wei S, Zhou J, Zhou Y. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques. Spectrochim Acta A. 2012;96:461–7.

    CAS  Google Scholar 

  51. 51.

    Hu DH, Wu HM, Liang JG, Han HY. Study on the interaction between CdSe quantum dots and hemoglobin. Spectrochim Acta A. 2008;69(3):830–4.

    Google Scholar 

  52. 52.

    Cheng H, Liu H, Bao W, Zou G. Studies on the interaction between docetaxel and human hemoglobin by spectroscopic analysis and molecular docking. J Photochem Photobiol, B. 2011;105(2):126–32.

    CAS  Google Scholar 

  53. 53.

    Fasman GD. Circular dichroism and the conformational analysis of biomolecules. New York: Plenum Press; 1996.

    Google Scholar 

  54. 54.

    Berova N, Nakanishi K, Woody RW. Circular dichroism: principles and applications. 2nd ed. New York: Wiley; 2000.

    Google Scholar 

  55. 55.

    Bolanos-Garcia VM, Ramos S, Castillo R, Xicohtencatl-Cortes J, Mas-Oliva J. Monolayers of apolipoproteins at the air/water interface. J Phys Chem B. 2001;105(24):5757–65.

    CAS  Google Scholar 

  56. 56.

    Chi Z, Liu R, Yang B, Zhang H. Toxic interaction between oxytetracycline and bovine hemoglobin. J Hazard Mater. 2010;180(1–3):741–7.

    CAS  PubMed  Google Scholar 

  57. 57.

    Todinova S, Raynova Y, Idakieva K. Irreversible thermal denaturation of Helix aspersa maxima hemocyanin. J Therm Anal Calorim. 2018;132(1):777–86.

    CAS  Google Scholar 

  58. 58.

    Ding F, Han BY, Liu W, Zhang L, Sun Y. Interaction of imidacloprid with hemoglobin by fluorescence and circular dichroism. J Fluoresc. 2010;20(3):753–62.

    CAS  PubMed  Google Scholar 

  59. 59.

    Jans H, Liu X, Austin L, Maes G, Huo Q. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem. 2009;81(22):9425–32.

    CAS  PubMed  Google Scholar 

  60. 60.

    Jachimska B, Wasilewska M, Adamczyk Z. Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements. Langmuir. 2008;24(13):6866–72.

    CAS  PubMed  Google Scholar 

  61. 61.

    Arosio D, Kwansa H, Gering H, Piszczek G, Bucci E. Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites. Biopolymers. 2002;63(1):1–11.

    CAS  PubMed  Google Scholar 

  62. 62.

    Jha I, Venkatesu P. Unprecedented improvement in the stability of hemoglobin in the presence of promising green solvent 1-allyl-3-methylimidazolium chloride. ACS Sustain Chem Eng. 2016;4(2):413–21.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financing provided by the Ministry of Science and Technology (MOST), Taiwan, through Grant MOST 105-2221-E-011-144-MY3, and the international student scholarship from NTUST.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by PP and BSG. The first draft of the manuscript was written by PP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ming-Jer Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 141 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pannuru, P., Gupta, B.S., Horng, J. et al. Biomolecular interactions of selected buffers with hemoglobin. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09947-7

Download citation

Keywords

  • Hemoglobin
  • Buffers
  • Protein stability
  • Biomolecular interactions
  • Biophysical techniques